Abstract
The Ekomedion two-mica granite, southwestern Cameroon, has potential for uranium and molybdenum mineralization. Here, we present LA-ICP-MS U–Pb ages, Lu–Hf isotope characteristics, trace element concentrations and Ti-geothermometry of zircon from this granite hosting U–Mo mineralization in pegmatitic pods. The majority of zircon are CL-dark though some CL-bright cores were also identified. U–Pb zircon age data range from 121 ± 3 to 743 ± 11 Ma with only 5 of 34 ages being near concordant. The concordant mean age of 603 ± 12 Ma is similar to ages of granitic intrusions along the Central African Shear Zone in Cameroon. Apparent ages with mean of 261 ± 6 Ma reveal open system behavior with respect to Pb and/or U. Zircon εHfi values range from − 20.3 to − 0.3. This implies that U–Mo was remobilized during partial melting of the surrounding gneiss. Zircon Th/U > 0.1 as well as an increasing Hf with decreasing Th/U indicates that fractional crystallization was the main factor that controlled U–Mo mineralization in pegmatitic pods. Y and Y/Ho ratios cluster from 29 to 33 close to the chondritic ratio of 28 and indicate fractionation of Y and Ho with low F contents during the earliest stages of crystallization. Late stage accumulation of F-rich magmatic-hydrothermal fluids impacted U–Mo mineralization as a ligand. Zircon contains a prominent negative Eu anomaly pointing to a fractionating system rich in plagioclase. Calculated Ti-in-zircon temperatures span 672 °C to 1232 °C with the temperatures at the high end reflecting interference from mineral inclusions in the zircon grains while the lower temperature values are linked to crystallization.
Original language | English |
---|---|
Pages (from-to) | 43-66 |
Number of pages | 24 |
Journal | Acta Geochimica |
Volume | 39 |
Issue number | 1 |
DOIs | |
Publication status | Published - Feb 1 2020 |
All Science Journal Classification (ASJC) codes
- Geochemistry and Petrology