Validation of CFD simulation results in case of portal vein blood flow

C. C. Botar, T. Vasile, S. Sfrangeu, S. Clichici, P. S. Agachi, R. Badea, P. Mircea, M. V. Cristea

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Promising applications such as disease research and medical diagnostic, where fluid mechanical conditions are correlated to regions prone to different pathologies represented during the time the driving force to study the blood flow and its relation with the vessels walls in the human circulatory system. The hemodymanics simulation studies have been frequently used to gain a better understanding of functional, diagnostic and therapeutic aspects of the blood flow. Therefore a precise quantification of the blood flow in vessels could constitute a strong basis for diagnosis, prediction or evolution estimation of blood vessels or associated organ diseases. Due to the fact that many fundamental issues of the blood flow, like phenomena associated with pressure and viscous forces fields, are still not fully understood or entirely described through mathematical formulations the characterization of blood flow is still a challenging task. The computational modeling of the blood flow and mechanical interactions that strongly affect the blood flow patterns, based on medical data and imaging represent the most accurate analysis of the blood flow complex behavior. But, in order to represent a valuable non-invasive tool capable to provide comprehensive insights of the overall phenomena taking place at the most intimate level inside the sanguine vessels and which could serve to medical purposes the computational modeling of the blood flow needs accurate validation. In the present paper the mathematical modeling of the blood flow in the portal vein has been addressed, the computational fluid dynamic (CFD) technique has been used and the model simulation results have been validated using in vivo Echo-Doppler measurements.

Original languageEnglish
Pages (from-to)205-210
Number of pages6
JournalComputer Aided Chemical Engineering
Volume28
Issue numberC
DOIs
Publication statusPublished - Jan 1 2010

Fingerprint

Computational fluid dynamics
Blood
Computer simulation
Blood vessels
Pathology
Flow patterns
Imaging techniques
Fluids

All Science Journal Classification (ASJC) codes

  • Chemical Engineering(all)
  • Computer Science Applications

Cite this

Botar, C. C., Vasile, T., Sfrangeu, S., Clichici, S., Agachi, P. S., Badea, R., ... Cristea, M. V. (2010). Validation of CFD simulation results in case of portal vein blood flow. Computer Aided Chemical Engineering, 28(C), 205-210. https://doi.org/10.1016/S1570-7946(10)28035-5
Botar, C. C. ; Vasile, T. ; Sfrangeu, S. ; Clichici, S. ; Agachi, P. S. ; Badea, R. ; Mircea, P. ; Cristea, M. V. / Validation of CFD simulation results in case of portal vein blood flow. In: Computer Aided Chemical Engineering. 2010 ; Vol. 28, No. C. pp. 205-210.
@article{d39766ac352340d3af7b2f7a3f5ed735,
title = "Validation of CFD simulation results in case of portal vein blood flow",
abstract = "Promising applications such as disease research and medical diagnostic, where fluid mechanical conditions are correlated to regions prone to different pathologies represented during the time the driving force to study the blood flow and its relation with the vessels walls in the human circulatory system. The hemodymanics simulation studies have been frequently used to gain a better understanding of functional, diagnostic and therapeutic aspects of the blood flow. Therefore a precise quantification of the blood flow in vessels could constitute a strong basis for diagnosis, prediction or evolution estimation of blood vessels or associated organ diseases. Due to the fact that many fundamental issues of the blood flow, like phenomena associated with pressure and viscous forces fields, are still not fully understood or entirely described through mathematical formulations the characterization of blood flow is still a challenging task. The computational modeling of the blood flow and mechanical interactions that strongly affect the blood flow patterns, based on medical data and imaging represent the most accurate analysis of the blood flow complex behavior. But, in order to represent a valuable non-invasive tool capable to provide comprehensive insights of the overall phenomena taking place at the most intimate level inside the sanguine vessels and which could serve to medical purposes the computational modeling of the blood flow needs accurate validation. In the present paper the mathematical modeling of the blood flow in the portal vein has been addressed, the computational fluid dynamic (CFD) technique has been used and the model simulation results have been validated using in vivo Echo-Doppler measurements.",
author = "Botar, {C. C.} and T. Vasile and S. Sfrangeu and S. Clichici and Agachi, {P. S.} and R. Badea and P. Mircea and Cristea, {M. V.}",
year = "2010",
month = "1",
day = "1",
doi = "10.1016/S1570-7946(10)28035-5",
language = "English",
volume = "28",
pages = "205--210",
journal = "Computer Aided Chemical Engineering",
issn = "1570-7946",
publisher = "Elsevier",
number = "C",

}

Botar, CC, Vasile, T, Sfrangeu, S, Clichici, S, Agachi, PS, Badea, R, Mircea, P & Cristea, MV 2010, 'Validation of CFD simulation results in case of portal vein blood flow', Computer Aided Chemical Engineering, vol. 28, no. C, pp. 205-210. https://doi.org/10.1016/S1570-7946(10)28035-5

Validation of CFD simulation results in case of portal vein blood flow. / Botar, C. C.; Vasile, T.; Sfrangeu, S.; Clichici, S.; Agachi, P. S.; Badea, R.; Mircea, P.; Cristea, M. V.

In: Computer Aided Chemical Engineering, Vol. 28, No. C, 01.01.2010, p. 205-210.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Validation of CFD simulation results in case of portal vein blood flow

AU - Botar, C. C.

AU - Vasile, T.

AU - Sfrangeu, S.

AU - Clichici, S.

AU - Agachi, P. S.

AU - Badea, R.

AU - Mircea, P.

AU - Cristea, M. V.

PY - 2010/1/1

Y1 - 2010/1/1

N2 - Promising applications such as disease research and medical diagnostic, where fluid mechanical conditions are correlated to regions prone to different pathologies represented during the time the driving force to study the blood flow and its relation with the vessels walls in the human circulatory system. The hemodymanics simulation studies have been frequently used to gain a better understanding of functional, diagnostic and therapeutic aspects of the blood flow. Therefore a precise quantification of the blood flow in vessels could constitute a strong basis for diagnosis, prediction or evolution estimation of blood vessels or associated organ diseases. Due to the fact that many fundamental issues of the blood flow, like phenomena associated with pressure and viscous forces fields, are still not fully understood or entirely described through mathematical formulations the characterization of blood flow is still a challenging task. The computational modeling of the blood flow and mechanical interactions that strongly affect the blood flow patterns, based on medical data and imaging represent the most accurate analysis of the blood flow complex behavior. But, in order to represent a valuable non-invasive tool capable to provide comprehensive insights of the overall phenomena taking place at the most intimate level inside the sanguine vessels and which could serve to medical purposes the computational modeling of the blood flow needs accurate validation. In the present paper the mathematical modeling of the blood flow in the portal vein has been addressed, the computational fluid dynamic (CFD) technique has been used and the model simulation results have been validated using in vivo Echo-Doppler measurements.

AB - Promising applications such as disease research and medical diagnostic, where fluid mechanical conditions are correlated to regions prone to different pathologies represented during the time the driving force to study the blood flow and its relation with the vessels walls in the human circulatory system. The hemodymanics simulation studies have been frequently used to gain a better understanding of functional, diagnostic and therapeutic aspects of the blood flow. Therefore a precise quantification of the blood flow in vessels could constitute a strong basis for diagnosis, prediction or evolution estimation of blood vessels or associated organ diseases. Due to the fact that many fundamental issues of the blood flow, like phenomena associated with pressure and viscous forces fields, are still not fully understood or entirely described through mathematical formulations the characterization of blood flow is still a challenging task. The computational modeling of the blood flow and mechanical interactions that strongly affect the blood flow patterns, based on medical data and imaging represent the most accurate analysis of the blood flow complex behavior. But, in order to represent a valuable non-invasive tool capable to provide comprehensive insights of the overall phenomena taking place at the most intimate level inside the sanguine vessels and which could serve to medical purposes the computational modeling of the blood flow needs accurate validation. In the present paper the mathematical modeling of the blood flow in the portal vein has been addressed, the computational fluid dynamic (CFD) technique has been used and the model simulation results have been validated using in vivo Echo-Doppler measurements.

UR - http://www.scopus.com/inward/record.url?scp=77955216315&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77955216315&partnerID=8YFLogxK

U2 - 10.1016/S1570-7946(10)28035-5

DO - 10.1016/S1570-7946(10)28035-5

M3 - Article

AN - SCOPUS:77955216315

VL - 28

SP - 205

EP - 210

JO - Computer Aided Chemical Engineering

JF - Computer Aided Chemical Engineering

SN - 1570-7946

IS - C

ER -