The igneous charnockite-high-K alkali-calcic I-type granite-incipient charnockite association in Trivandrum Block, southern India

Research output: Contribution to journalArticle

37 Citations (Scopus)

Abstract

The Pan-African (640 Ma) Chengannoor granite intrudes the NW margin of the Neoproterozoic high-grade metamorphic terrain of the Trivandrum Block (TB), southern India, and is spatially associated with the Cardamom hills igneous charnockite massif (CM). Geochemical features characterize the Chengannoor granite as high-K alkali-calcic I-type granite. Within the constraints imposed by the high temperature, anhydrous, K-rich nature of the magmas, comparison with recent experimental studies on various granitoid source compositions, and trace- and rare-earth-element modelling, the distinctive features of the Chengannoor granite reflect a source rock of igneous charnockitic nature. A petrogenetic model is proposed whereby there was a period of basaltic underplating; the partial melting of this basaltic lower crust formed the CM charnockites. The Chengannoor granite was produced by the partial melting of the charnoenderbites from the CM, with subsequent fractionation dominated by feldspars. In a regional context, the Chengannoor I-type granite is considered as a possible heat source for the near-UHT nature of metamorphism in the northern part of the TB. This is different from previous studies, which favoured CM charnockite as the major heat source. The occurrence of incipient charnockites (both large scale as well as small scale) adjacent to the granite as well as pegmatites (which contain CO2, CO2-H2O, F and other volatiles), suggests that the fluids expelled from the alkaline magma upon solidification generated incipient charnockites through fluid-induced lowering of water activity. Thus the granite and associated alkaline pegmatites acted as conduits for the transfer of heat and volatiles in the Achankovil Shear Zone area, causing pervasive as well as patchy charnockite formation. The transport of CO2 by felsic melts through the southern Indian middle crust is suggested to be part of a crustal-scale fluid system that linked mantle heat and CO2 input with upward migration of crustally derived felsic melts and incipient charnockite formation, resulting in an igneous charnockite - I-type granite - incipient charnockite association.

Original languageEnglish
Pages (from-to)346-362
Number of pages17
JournalContributions to Mineralogy and Petrology
Volume147
Issue number3
DOIs
Publication statusPublished - May 1 2004

Fingerprint

charnockite
Alkalies
granite
India
alkalies
Association reactions
heat source
heat sources
partial melting
Fluids
fluid
fluids
crusts
Melting
melting
melt
heat
feldspars
underplating
solidification

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Geochemistry and Petrology

Cite this

@article{2f1b09998f3c44cab289394bfa9ce77d,
title = "The igneous charnockite-high-K alkali-calcic I-type granite-incipient charnockite association in Trivandrum Block, southern India",
abstract = "The Pan-African (640 Ma) Chengannoor granite intrudes the NW margin of the Neoproterozoic high-grade metamorphic terrain of the Trivandrum Block (TB), southern India, and is spatially associated with the Cardamom hills igneous charnockite massif (CM). Geochemical features characterize the Chengannoor granite as high-K alkali-calcic I-type granite. Within the constraints imposed by the high temperature, anhydrous, K-rich nature of the magmas, comparison with recent experimental studies on various granitoid source compositions, and trace- and rare-earth-element modelling, the distinctive features of the Chengannoor granite reflect a source rock of igneous charnockitic nature. A petrogenetic model is proposed whereby there was a period of basaltic underplating; the partial melting of this basaltic lower crust formed the CM charnockites. The Chengannoor granite was produced by the partial melting of the charnoenderbites from the CM, with subsequent fractionation dominated by feldspars. In a regional context, the Chengannoor I-type granite is considered as a possible heat source for the near-UHT nature of metamorphism in the northern part of the TB. This is different from previous studies, which favoured CM charnockite as the major heat source. The occurrence of incipient charnockites (both large scale as well as small scale) adjacent to the granite as well as pegmatites (which contain CO2, CO2-H2O, F and other volatiles), suggests that the fluids expelled from the alkaline magma upon solidification generated incipient charnockites through fluid-induced lowering of water activity. Thus the granite and associated alkaline pegmatites acted as conduits for the transfer of heat and volatiles in the Achankovil Shear Zone area, causing pervasive as well as patchy charnockite formation. The transport of CO2 by felsic melts through the southern Indian middle crust is suggested to be part of a crustal-scale fluid system that linked mantle heat and CO2 input with upward migration of crustally derived felsic melts and incipient charnockite formation, resulting in an igneous charnockite - I-type granite - incipient charnockite association.",
author = "Rajesh, {H. M.}",
year = "2004",
month = "5",
day = "1",
doi = "10.1007/s00410-004-0561-7",
language = "English",
volume = "147",
pages = "346--362",
journal = "Contributions to Mineralogy and Petrology",
issn = "0010-7999",
publisher = "Springer Verlag",
number = "3",

}

TY - JOUR

T1 - The igneous charnockite-high-K alkali-calcic I-type granite-incipient charnockite association in Trivandrum Block, southern India

AU - Rajesh, H. M.

PY - 2004/5/1

Y1 - 2004/5/1

N2 - The Pan-African (640 Ma) Chengannoor granite intrudes the NW margin of the Neoproterozoic high-grade metamorphic terrain of the Trivandrum Block (TB), southern India, and is spatially associated with the Cardamom hills igneous charnockite massif (CM). Geochemical features characterize the Chengannoor granite as high-K alkali-calcic I-type granite. Within the constraints imposed by the high temperature, anhydrous, K-rich nature of the magmas, comparison with recent experimental studies on various granitoid source compositions, and trace- and rare-earth-element modelling, the distinctive features of the Chengannoor granite reflect a source rock of igneous charnockitic nature. A petrogenetic model is proposed whereby there was a period of basaltic underplating; the partial melting of this basaltic lower crust formed the CM charnockites. The Chengannoor granite was produced by the partial melting of the charnoenderbites from the CM, with subsequent fractionation dominated by feldspars. In a regional context, the Chengannoor I-type granite is considered as a possible heat source for the near-UHT nature of metamorphism in the northern part of the TB. This is different from previous studies, which favoured CM charnockite as the major heat source. The occurrence of incipient charnockites (both large scale as well as small scale) adjacent to the granite as well as pegmatites (which contain CO2, CO2-H2O, F and other volatiles), suggests that the fluids expelled from the alkaline magma upon solidification generated incipient charnockites through fluid-induced lowering of water activity. Thus the granite and associated alkaline pegmatites acted as conduits for the transfer of heat and volatiles in the Achankovil Shear Zone area, causing pervasive as well as patchy charnockite formation. The transport of CO2 by felsic melts through the southern Indian middle crust is suggested to be part of a crustal-scale fluid system that linked mantle heat and CO2 input with upward migration of crustally derived felsic melts and incipient charnockite formation, resulting in an igneous charnockite - I-type granite - incipient charnockite association.

AB - The Pan-African (640 Ma) Chengannoor granite intrudes the NW margin of the Neoproterozoic high-grade metamorphic terrain of the Trivandrum Block (TB), southern India, and is spatially associated with the Cardamom hills igneous charnockite massif (CM). Geochemical features characterize the Chengannoor granite as high-K alkali-calcic I-type granite. Within the constraints imposed by the high temperature, anhydrous, K-rich nature of the magmas, comparison with recent experimental studies on various granitoid source compositions, and trace- and rare-earth-element modelling, the distinctive features of the Chengannoor granite reflect a source rock of igneous charnockitic nature. A petrogenetic model is proposed whereby there was a period of basaltic underplating; the partial melting of this basaltic lower crust formed the CM charnockites. The Chengannoor granite was produced by the partial melting of the charnoenderbites from the CM, with subsequent fractionation dominated by feldspars. In a regional context, the Chengannoor I-type granite is considered as a possible heat source for the near-UHT nature of metamorphism in the northern part of the TB. This is different from previous studies, which favoured CM charnockite as the major heat source. The occurrence of incipient charnockites (both large scale as well as small scale) adjacent to the granite as well as pegmatites (which contain CO2, CO2-H2O, F and other volatiles), suggests that the fluids expelled from the alkaline magma upon solidification generated incipient charnockites through fluid-induced lowering of water activity. Thus the granite and associated alkaline pegmatites acted as conduits for the transfer of heat and volatiles in the Achankovil Shear Zone area, causing pervasive as well as patchy charnockite formation. The transport of CO2 by felsic melts through the southern Indian middle crust is suggested to be part of a crustal-scale fluid system that linked mantle heat and CO2 input with upward migration of crustally derived felsic melts and incipient charnockite formation, resulting in an igneous charnockite - I-type granite - incipient charnockite association.

UR - http://www.scopus.com/inward/record.url?scp=2542455560&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=2542455560&partnerID=8YFLogxK

U2 - 10.1007/s00410-004-0561-7

DO - 10.1007/s00410-004-0561-7

M3 - Article

AN - SCOPUS:2542455560

VL - 147

SP - 346

EP - 362

JO - Contributions to Mineralogy and Petrology

JF - Contributions to Mineralogy and Petrology

SN - 0010-7999

IS - 3

ER -