System drivers in the performance of auxiliary ventilation systems

R. S. Suglo, S. Frimpong, I. R. Muirhead

    Research output: Contribution to specialist publicationArticle

    Abstract

    The mechanization of mining operations in underground coal mines has led to faster cutting rates of coalfaces with increased levels of emission of gaseous and particulate contaminants in the workings. Consequently, the fresh air streams from the main ventilation systems reaching distant workings are often insufficient, ineffective or inadequate and have to be supplemented by auxiliary ventilation systems to create and maintain the required working environments underground. The efficiencies of auxiliary ventilation systems are largely affected by drivers of the system such as the type and capacity of the fan; the type, length, diameter and condition of the ventilation ducting and the distance from the discharge end of the intake ducting to the face. Traditionally, single point measurements of methane gas concentrations using either flame safety lamps or hand-held measuring instruments have been used to assess how safe underground coal workings were. Unfortunately, such occasional measurements of methane gas concentrations do not give an accurate picture of the real gas concentration in the working as they are often taken from the easily accessible locations in working. Continuous monitoring of the methane gas concentration in development headings enables a better assessment of the environmental conditions prevailing there. All variations in the methane concentrations are more easily captured on a continuous monitoring basis than by instantaneous single point measurements. The approach adopted in this work was to continuously monitor the concentration of methane very close to the face and about 60 m outbye in development headings, observe the types of auxiliary ventilation equipment and their sizes being used in the working as well as noting the lengths from the discharge ends of the forcing and exhaust ductings to the face. In this paper, empirical methods are used to calculate the mean efficiencies of the auxiliary ventilation systems in selected development headings in coal mines in North America. This enables the assessment of the effectiveness of the auxiliary ventilation systems and the identification of the system drivers in them. The results show that the efficiencies of the forcing systems ranged from 17.02% to 96.81% while the efficiencies of the overall systems varied from 6.04% to 54.16%. The distance from the discharge end of the intake ducting to the face appeared to be the strongest driver in the performance of the auxiliary ventilation systems studied. It was also noted that when the discharge end of the intake ducting to the face does not exceed 7 m, there were faster purging rates of methane at the face and the efficiencies of the overall auxiliary ventilation system were greater than 50%. These findings are very important in underground coal mining in North America as they will assist to avert calamities, such as the Westray coal mine disaster in 1992 which resulted from the explosion of methane gas, by identifying which components of the ventilation system need special attention to create safe working conditions underground.

    Original languageEnglish
    Pages110-115
    Number of pages6
    Volume96
    No.1069
    Specialist publicationCIM Bulletin
    Publication statusPublished - Mar 2003

    Fingerprint

    Ventilation
    ventilation
    Methane
    methane
    Coal mines
    Gases
    coal mine
    gas
    subterranean environment
    Purging
    Mechanization
    Coal
    Monitoring
    working conditions
    monitoring
    coal mining
    Electric lamps
    Disasters
    Fans
    Explosions

    All Science Journal Classification (ASJC) codes

    • Geotechnical Engineering and Engineering Geology
    • Metals and Alloys

    Cite this

    Suglo, R. S., Frimpong, S., & Muirhead, I. R. (2003). System drivers in the performance of auxiliary ventilation systems. CIM Bulletin, 96(1069), 110-115.
    Suglo, R. S. ; Frimpong, S. ; Muirhead, I. R. / System drivers in the performance of auxiliary ventilation systems. In: CIM Bulletin. 2003 ; Vol. 96, No. 1069. pp. 110-115.
    @misc{886c3e4526a949b0bad0bded58b466d3,
    title = "System drivers in the performance of auxiliary ventilation systems",
    abstract = "The mechanization of mining operations in underground coal mines has led to faster cutting rates of coalfaces with increased levels of emission of gaseous and particulate contaminants in the workings. Consequently, the fresh air streams from the main ventilation systems reaching distant workings are often insufficient, ineffective or inadequate and have to be supplemented by auxiliary ventilation systems to create and maintain the required working environments underground. The efficiencies of auxiliary ventilation systems are largely affected by drivers of the system such as the type and capacity of the fan; the type, length, diameter and condition of the ventilation ducting and the distance from the discharge end of the intake ducting to the face. Traditionally, single point measurements of methane gas concentrations using either flame safety lamps or hand-held measuring instruments have been used to assess how safe underground coal workings were. Unfortunately, such occasional measurements of methane gas concentrations do not give an accurate picture of the real gas concentration in the working as they are often taken from the easily accessible locations in working. Continuous monitoring of the methane gas concentration in development headings enables a better assessment of the environmental conditions prevailing there. All variations in the methane concentrations are more easily captured on a continuous monitoring basis than by instantaneous single point measurements. The approach adopted in this work was to continuously monitor the concentration of methane very close to the face and about 60 m outbye in development headings, observe the types of auxiliary ventilation equipment and their sizes being used in the working as well as noting the lengths from the discharge ends of the forcing and exhaust ductings to the face. In this paper, empirical methods are used to calculate the mean efficiencies of the auxiliary ventilation systems in selected development headings in coal mines in North America. This enables the assessment of the effectiveness of the auxiliary ventilation systems and the identification of the system drivers in them. The results show that the efficiencies of the forcing systems ranged from 17.02{\%} to 96.81{\%} while the efficiencies of the overall systems varied from 6.04{\%} to 54.16{\%}. The distance from the discharge end of the intake ducting to the face appeared to be the strongest driver in the performance of the auxiliary ventilation systems studied. It was also noted that when the discharge end of the intake ducting to the face does not exceed 7 m, there were faster purging rates of methane at the face and the efficiencies of the overall auxiliary ventilation system were greater than 50{\%}. These findings are very important in underground coal mining in North America as they will assist to avert calamities, such as the Westray coal mine disaster in 1992 which resulted from the explosion of methane gas, by identifying which components of the ventilation system need special attention to create safe working conditions underground.",
    author = "Suglo, {R. S.} and S. Frimpong and Muirhead, {I. R.}",
    year = "2003",
    month = "3",
    language = "English",
    volume = "96",
    pages = "110--115",
    journal = "CIM Magazine",
    issn = "1718-4177",
    publisher = "Canadian Institute of Mining, Metallurgy and Petroleum",

    }

    Suglo, RS, Frimpong, S & Muirhead, IR 2003, 'System drivers in the performance of auxiliary ventilation systems' CIM Bulletin, vol. 96, no. 1069, pp. 110-115.

    System drivers in the performance of auxiliary ventilation systems. / Suglo, R. S.; Frimpong, S.; Muirhead, I. R.

    In: CIM Bulletin, Vol. 96, No. 1069, 03.2003, p. 110-115.

    Research output: Contribution to specialist publicationArticle

    TY - GEN

    T1 - System drivers in the performance of auxiliary ventilation systems

    AU - Suglo, R. S.

    AU - Frimpong, S.

    AU - Muirhead, I. R.

    PY - 2003/3

    Y1 - 2003/3

    N2 - The mechanization of mining operations in underground coal mines has led to faster cutting rates of coalfaces with increased levels of emission of gaseous and particulate contaminants in the workings. Consequently, the fresh air streams from the main ventilation systems reaching distant workings are often insufficient, ineffective or inadequate and have to be supplemented by auxiliary ventilation systems to create and maintain the required working environments underground. The efficiencies of auxiliary ventilation systems are largely affected by drivers of the system such as the type and capacity of the fan; the type, length, diameter and condition of the ventilation ducting and the distance from the discharge end of the intake ducting to the face. Traditionally, single point measurements of methane gas concentrations using either flame safety lamps or hand-held measuring instruments have been used to assess how safe underground coal workings were. Unfortunately, such occasional measurements of methane gas concentrations do not give an accurate picture of the real gas concentration in the working as they are often taken from the easily accessible locations in working. Continuous monitoring of the methane gas concentration in development headings enables a better assessment of the environmental conditions prevailing there. All variations in the methane concentrations are more easily captured on a continuous monitoring basis than by instantaneous single point measurements. The approach adopted in this work was to continuously monitor the concentration of methane very close to the face and about 60 m outbye in development headings, observe the types of auxiliary ventilation equipment and their sizes being used in the working as well as noting the lengths from the discharge ends of the forcing and exhaust ductings to the face. In this paper, empirical methods are used to calculate the mean efficiencies of the auxiliary ventilation systems in selected development headings in coal mines in North America. This enables the assessment of the effectiveness of the auxiliary ventilation systems and the identification of the system drivers in them. The results show that the efficiencies of the forcing systems ranged from 17.02% to 96.81% while the efficiencies of the overall systems varied from 6.04% to 54.16%. The distance from the discharge end of the intake ducting to the face appeared to be the strongest driver in the performance of the auxiliary ventilation systems studied. It was also noted that when the discharge end of the intake ducting to the face does not exceed 7 m, there were faster purging rates of methane at the face and the efficiencies of the overall auxiliary ventilation system were greater than 50%. These findings are very important in underground coal mining in North America as they will assist to avert calamities, such as the Westray coal mine disaster in 1992 which resulted from the explosion of methane gas, by identifying which components of the ventilation system need special attention to create safe working conditions underground.

    AB - The mechanization of mining operations in underground coal mines has led to faster cutting rates of coalfaces with increased levels of emission of gaseous and particulate contaminants in the workings. Consequently, the fresh air streams from the main ventilation systems reaching distant workings are often insufficient, ineffective or inadequate and have to be supplemented by auxiliary ventilation systems to create and maintain the required working environments underground. The efficiencies of auxiliary ventilation systems are largely affected by drivers of the system such as the type and capacity of the fan; the type, length, diameter and condition of the ventilation ducting and the distance from the discharge end of the intake ducting to the face. Traditionally, single point measurements of methane gas concentrations using either flame safety lamps or hand-held measuring instruments have been used to assess how safe underground coal workings were. Unfortunately, such occasional measurements of methane gas concentrations do not give an accurate picture of the real gas concentration in the working as they are often taken from the easily accessible locations in working. Continuous monitoring of the methane gas concentration in development headings enables a better assessment of the environmental conditions prevailing there. All variations in the methane concentrations are more easily captured on a continuous monitoring basis than by instantaneous single point measurements. The approach adopted in this work was to continuously monitor the concentration of methane very close to the face and about 60 m outbye in development headings, observe the types of auxiliary ventilation equipment and their sizes being used in the working as well as noting the lengths from the discharge ends of the forcing and exhaust ductings to the face. In this paper, empirical methods are used to calculate the mean efficiencies of the auxiliary ventilation systems in selected development headings in coal mines in North America. This enables the assessment of the effectiveness of the auxiliary ventilation systems and the identification of the system drivers in them. The results show that the efficiencies of the forcing systems ranged from 17.02% to 96.81% while the efficiencies of the overall systems varied from 6.04% to 54.16%. The distance from the discharge end of the intake ducting to the face appeared to be the strongest driver in the performance of the auxiliary ventilation systems studied. It was also noted that when the discharge end of the intake ducting to the face does not exceed 7 m, there were faster purging rates of methane at the face and the efficiencies of the overall auxiliary ventilation system were greater than 50%. These findings are very important in underground coal mining in North America as they will assist to avert calamities, such as the Westray coal mine disaster in 1992 which resulted from the explosion of methane gas, by identifying which components of the ventilation system need special attention to create safe working conditions underground.

    UR - http://www.scopus.com/inward/record.url?scp=0037993975&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=0037993975&partnerID=8YFLogxK

    M3 - Article

    VL - 96

    SP - 110

    EP - 115

    JO - CIM Magazine

    JF - CIM Magazine

    SN - 1718-4177

    ER -