SAMELSON PRODUCTS IN FUNCTION SPACES

GATSINZI JEAN-BAPTISTE, KWASHIRA RUGARE

Research output: Contribution to journalArticle

Abstract

We study Samelson products on models of function spaces. Given a map $f:X{\rightarrow}Y$ between 1-connected spaces and its Quillen model ${\mathbb{L}}(f):{\mathbb{L}}(V){\rightarrow}{\mathbb{L}}(W)$, there is an isomorphism of graded vector spaces ${\Theta}:H_*(Hom_{TV}(TV{\otimes}({\mathbb{Q}}{\oplus}sV),{\mathbb{L}}(W))){\rightarrow}H_*({\mathbb{L}}(W){\oplus}Der({\mathbb{L}}(V),{\mathbb{L}}(W)))$. We define a Samelson product on $H_*(Hom_{TV}(TV{\otimes}({\mathbb{Q}}{\oplus}sV),{\mathbb{L}}(W)))$.
Original languageEnglish
Pages (from-to)1297-1303
Number of pages7
JournalBulletin of the Korean Mathematical Society
Volume52
Issue number4
DOIs
Publication statusPublished - Jul 31 2015

Fingerprint Dive into the research topics of 'SAMELSON PRODUCTS IN FUNCTION SPACES'. Together they form a unique fingerprint.

  • Cite this