TY - JOUR

T1 - Relativistic predictions of spin observables for exclusive proton knockout reactions

AU - Hillhouse, G. C.

AU - Mano, J.

AU - Wyngaardt, S. M.

AU - van der Ventel, B. I.S.

AU - Noro, T.

AU - Hatanaka, K.

PY - 2003/9

Y1 - 2003/9

N2 - We demonstrate the ability of complete sets of exclusive (p →,2p→) polarization transfer observables to discriminate between different model ingredients of the relativistic distorted wave impulse approximation (DWIA). Spin observables are identified, which are sensitive to Dirac versus Schrödinger dynamical equations of motion, different distorting optical potentials, finite-range versus zero-range approximations to the DWIA, as well as medium-modified meson-nucleon coupling constants and meson masses. In particular, we consider the knockout of protons from the 3s1/2, 2d3/2, and 2d5/2 states in 208Pb, at an incident laboratory kinetic energy of 202 MeV, and for coincident coplanar scattering angles (28.0°, -54.6°). The reaction kinematics are chosen so as to maximize the influence of distortion effects, while still maintaining the validity of the impulse approximation, and also avoiding complications associated with the inclusion of recoil corrections in the relativistic Dirac equation.

AB - We demonstrate the ability of complete sets of exclusive (p →,2p→) polarization transfer observables to discriminate between different model ingredients of the relativistic distorted wave impulse approximation (DWIA). Spin observables are identified, which are sensitive to Dirac versus Schrödinger dynamical equations of motion, different distorting optical potentials, finite-range versus zero-range approximations to the DWIA, as well as medium-modified meson-nucleon coupling constants and meson masses. In particular, we consider the knockout of protons from the 3s1/2, 2d3/2, and 2d5/2 states in 208Pb, at an incident laboratory kinetic energy of 202 MeV, and for coincident coplanar scattering angles (28.0°, -54.6°). The reaction kinematics are chosen so as to maximize the influence of distortion effects, while still maintaining the validity of the impulse approximation, and also avoiding complications associated with the inclusion of recoil corrections in the relativistic Dirac equation.

UR - http://www.scopus.com/inward/record.url?scp=85035255122&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85035255122&partnerID=8YFLogxK

U2 - 10.1103/PhysRevC.68.034608

DO - 10.1103/PhysRevC.68.034608

M3 - Article

AN - SCOPUS:0345359333

VL - 68

JO - Physical Review C - Nuclear Physics

JF - Physical Review C - Nuclear Physics

SN - 0556-2813

IS - 3

M1 - 034608

ER -