TY - JOUR
T1 - Products and Lusternik-Schnirelmann category of classifying spaces
AU - Gatsinzi, J.-B.
PY - 1998
Y1 - 1998
N2 - Let X = Y × Z be a simply connected finite CW-complex. We show that the LS category of B aut X is not finite if the LS category of B aut Y is infinite. Moreover if π∗(ΩX) ⊗ Q contains a free Lie ideal of finite codimension, then π∗(B aut X) ⊗ Q grows exponentially.
AB - Let X = Y × Z be a simply connected finite CW-complex. We show that the LS category of B aut X is not finite if the LS category of B aut Y is infinite. Moreover if π∗(ΩX) ⊗ Q contains a free Lie ideal of finite codimension, then π∗(B aut X) ⊗ Q grows exponentially.
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-0032560905&origin=resultslist&sort=plf-f&src=s&st1=Products+and+Lusternik-Schnirelmann+category+of+classifying+spaces&st2=&sid=a22423dcfbbf3d9251f5cfa84f057689&sot=b&sdt=b&sl=81&s=TITLE-ABS-KEY%28Products+and+Lusternik-Schnirelmann+category+of+classifying+spaces%29&relpos=1&citeCnt=3&searchTerm=
U2 - https://doi.org/10.1016/S0019-3577(98)80004-9
DO - https://doi.org/10.1016/S0019-3577(98)80004-9
M3 - Article
SN - 0019-3577
VL - 9
SP - 351
EP - 357
JO - Indagationes Mathematicae
JF - Indagationes Mathematicae
IS - 3
ER -