Parabolic equations of Von Karman type on Kähler manifolds, II

Pascal Cherrier, Albert Milani

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

We complete the study of a parabolic version of a system of Von Karman type on a compact Kähler manifold of complex dimension m. We consider a family of problems (P)k. We prove existence of local in time solutions when k = 0. When - m ≤ k < 0, we define a notion of weak solution, and give some uniqueness and existence results.

Original languageEnglish
Pages (from-to)113-133
Number of pages21
JournalBulletin des Sciences Mathematiques
Volume133
Issue number2
DOIs
Publication statusPublished - Mar 1 2009

Fingerprint

Existence and Uniqueness Results
Compact Manifold
Parabolic Equation
Weak Solution
Family

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Cite this

@article{8edbf1116ca643c99a8969dfe6485a6a,
title = "Parabolic equations of Von Karman type on K{\"a}hler manifolds, II",
abstract = "We complete the study of a parabolic version of a system of Von Karman type on a compact K{\"a}hler manifold of complex dimension m. We consider a family of problems (P)k. We prove existence of local in time solutions when k = 0. When - m ≤ k < 0, we define a notion of weak solution, and give some uniqueness and existence results.",
author = "Pascal Cherrier and Albert Milani",
year = "2009",
month = "3",
day = "1",
doi = "10.1016/j.bulsci.2008.05.001",
language = "English",
volume = "133",
pages = "113--133",
journal = "Bulletin des Sciences Mathematiques",
issn = "0007-4497",
publisher = "Elsevier Masson SAS",
number = "2",

}

Parabolic equations of Von Karman type on Kähler manifolds, II. / Cherrier, Pascal; Milani, Albert.

In: Bulletin des Sciences Mathematiques, Vol. 133, No. 2, 01.03.2009, p. 113-133.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Parabolic equations of Von Karman type on Kähler manifolds, II

AU - Cherrier, Pascal

AU - Milani, Albert

PY - 2009/3/1

Y1 - 2009/3/1

N2 - We complete the study of a parabolic version of a system of Von Karman type on a compact Kähler manifold of complex dimension m. We consider a family of problems (P)k. We prove existence of local in time solutions when k = 0. When - m ≤ k < 0, we define a notion of weak solution, and give some uniqueness and existence results.

AB - We complete the study of a parabolic version of a system of Von Karman type on a compact Kähler manifold of complex dimension m. We consider a family of problems (P)k. We prove existence of local in time solutions when k = 0. When - m ≤ k < 0, we define a notion of weak solution, and give some uniqueness and existence results.

UR - http://www.scopus.com/inward/record.url?scp=60649112249&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=60649112249&partnerID=8YFLogxK

U2 - 10.1016/j.bulsci.2008.05.001

DO - 10.1016/j.bulsci.2008.05.001

M3 - Article

VL - 133

SP - 113

EP - 133

JO - Bulletin des Sciences Mathematiques

JF - Bulletin des Sciences Mathematiques

SN - 0007-4497

IS - 2

ER -