TY - JOUR
T1 - Parabolic equations of Von Karman type on Kähler manifolds, II
AU - Cherrier, Pascal
AU - Milani, Albert
PY - 2009/3/1
Y1 - 2009/3/1
N2 - We complete the study of a parabolic version of a system of Von Karman type on a compact Kähler manifold of complex dimension m. We consider a family of problems (P)k. We prove existence of local in time solutions when k = 0. When - m ≤ k < 0, we define a notion of weak solution, and give some uniqueness and existence results.
AB - We complete the study of a parabolic version of a system of Von Karman type on a compact Kähler manifold of complex dimension m. We consider a family of problems (P)k. We prove existence of local in time solutions when k = 0. When - m ≤ k < 0, we define a notion of weak solution, and give some uniqueness and existence results.
UR - http://www.scopus.com/inward/record.url?scp=60649112249&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=60649112249&partnerID=8YFLogxK
U2 - 10.1016/j.bulsci.2008.05.001
DO - 10.1016/j.bulsci.2008.05.001
M3 - Article
AN - SCOPUS:60649112249
SN - 0007-4497
VL - 133
SP - 113
EP - 133
JO - Bulletin des Sciences Mathematiques
JF - Bulletin des Sciences Mathematiques
IS - 2
ER -