Parabolic equations of Von Karman type on Kähler manifolds

Pascal Cherrier, Albert Milani

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

We study a parabolic version of a system of Von Karman type on a compact Kähler manifold of arbitrary dimension. We provide local in time regular solutions, which can be extended to global bounded ones if the data of the problem are small.

Original languageEnglish
Pages (from-to)375-396
Number of pages22
JournalBulletin des Sciences Mathematiques
Volume131
Issue number4
DOIs
Publication statusPublished - Jun 1 2007

Fingerprint

Regular Solution
Compact Manifold
Parabolic Equation
Arbitrary

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Cite this

@article{53bc9dadf32f4db2a6538cf2dc76dd00,
title = "Parabolic equations of Von Karman type on K{\"a}hler manifolds",
abstract = "We study a parabolic version of a system of Von Karman type on a compact K{\"a}hler manifold of arbitrary dimension. We provide local in time regular solutions, which can be extended to global bounded ones if the data of the problem are small.",
author = "Pascal Cherrier and Albert Milani",
year = "2007",
month = "6",
day = "1",
doi = "10.1016/j.bulsci.2006.05.008",
language = "English",
volume = "131",
pages = "375--396",
journal = "Bulletin des Sciences Mathematiques",
issn = "0007-4497",
publisher = "Elsevier Masson SAS",
number = "4",

}

Parabolic equations of Von Karman type on Kähler manifolds. / Cherrier, Pascal; Milani, Albert.

In: Bulletin des Sciences Mathematiques, Vol. 131, No. 4, 01.06.2007, p. 375-396.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Parabolic equations of Von Karman type on Kähler manifolds

AU - Cherrier, Pascal

AU - Milani, Albert

PY - 2007/6/1

Y1 - 2007/6/1

N2 - We study a parabolic version of a system of Von Karman type on a compact Kähler manifold of arbitrary dimension. We provide local in time regular solutions, which can be extended to global bounded ones if the data of the problem are small.

AB - We study a parabolic version of a system of Von Karman type on a compact Kähler manifold of arbitrary dimension. We provide local in time regular solutions, which can be extended to global bounded ones if the data of the problem are small.

UR - http://www.scopus.com/inward/record.url?scp=34249021527&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34249021527&partnerID=8YFLogxK

U2 - 10.1016/j.bulsci.2006.05.008

DO - 10.1016/j.bulsci.2006.05.008

M3 - Article

VL - 131

SP - 375

EP - 396

JO - Bulletin des Sciences Mathematiques

JF - Bulletin des Sciences Mathematiques

SN - 0007-4497

IS - 4

ER -