Équations paraboliques du type de Von Kármán sur les variétés kählériennes

Translated title of the contribution: Parabolic equations of Von Kármán type on Kähler manifolds

Pascal Cherrier, Albert Milani

Research output: Contribution to journalArticle

Abstract

Study of a parabolic version of a system of Von Kármán type on a compact Kähler manifold. Existence of local in time regular solutions, which can be extended to global bounded ones if the data of the problem are sufficiently small. To cite this article: P. Cherrier, A. Milani, C. R. Acad. Sci. Paris, Ser. I 343 (2006).

Original languageFrench
Pages (from-to)23-25
Number of pages3
JournalComptes Rendus Mathematique
Volume343
Issue number1
DOIs
Publication statusPublished - Jul 1 2006

Fingerprint

Regular Solution
Compact Manifold
Parabolic Equation

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Cite this

@article{5a1877d553ed4b0d850841624e4f39a2,
title = "{\'E}quations paraboliques du type de Von K{\'a}rm{\'a}n sur les vari{\'e}t{\'e}s k{\"a}hl{\'e}riennes",
abstract = "Study of a parabolic version of a system of Von K{\'a}rm{\'a}n type on a compact K{\"a}hler manifold. Existence of local in time regular solutions, which can be extended to global bounded ones if the data of the problem are sufficiently small. To cite this article: P. Cherrier, A. Milani, C. R. Acad. Sci. Paris, Ser. I 343 (2006).",
author = "Pascal Cherrier and Albert Milani",
year = "2006",
month = "7",
day = "1",
doi = "10.1016/j.crma.2006.03.030",
language = "French",
volume = "343",
pages = "23--25",
journal = "Comptes Rendus Mathematique",
issn = "1631-073X",
publisher = "Elsevier Masson",
number = "1",

}

Équations paraboliques du type de Von Kármán sur les variétés kählériennes. / Cherrier, Pascal; Milani, Albert.

In: Comptes Rendus Mathematique, Vol. 343, No. 1, 01.07.2006, p. 23-25.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Équations paraboliques du type de Von Kármán sur les variétés kählériennes

AU - Cherrier, Pascal

AU - Milani, Albert

PY - 2006/7/1

Y1 - 2006/7/1

N2 - Study of a parabolic version of a system of Von Kármán type on a compact Kähler manifold. Existence of local in time regular solutions, which can be extended to global bounded ones if the data of the problem are sufficiently small. To cite this article: P. Cherrier, A. Milani, C. R. Acad. Sci. Paris, Ser. I 343 (2006).

AB - Study of a parabolic version of a system of Von Kármán type on a compact Kähler manifold. Existence of local in time regular solutions, which can be extended to global bounded ones if the data of the problem are sufficiently small. To cite this article: P. Cherrier, A. Milani, C. R. Acad. Sci. Paris, Ser. I 343 (2006).

UR - http://www.scopus.com/inward/record.url?scp=33745359396&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33745359396&partnerID=8YFLogxK

U2 - 10.1016/j.crma.2006.03.030

DO - 10.1016/j.crma.2006.03.030

M3 - Article

AN - SCOPUS:33745359396

VL - 343

SP - 23

EP - 25

JO - Comptes Rendus Mathematique

JF - Comptes Rendus Mathematique

SN - 1631-073X

IS - 1

ER -