Multivariate Mapping of Heavy Metals Spatial Contamination in a Cu–Ni Exploration Field (Botswana) Using Turning Bands Co-simulation Algorithm

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

With a mining-driven economy, Botswana has experienced increased geochemical exploration of minerals around existing mining towns. The mining and smelting of copper and nickel around Selibe-Phikwe in the Central Province are capable of releasing heavy metals including Pb, Fe, Mn, Co, Ni and Cu into the soil environments, thereby exposing humans, plants and animals to health risks. In this study, turning bands co-simulation, a multivariate geostatistical algorithm, was presented as a tool for spatial uncertainty quantification and probability mapping of cross-correlated heavy metals (Co, Mn, Fe and Pb) risk assessment in a semiarid Cu–Ni exploration field of Botswana. A total of 1050 soil samples were collected across the field at a depth of ~ 10 cm in a grid sampling design. Rapid elemental concentration analysis was done using an Olympus Delta Sigma portable X-ray fluorescence device. Enrichment factor, geoaccumulation index and pollution load index were used to assess the potential risk of heavy metals contamination in soils. The partially heterotopic nature of the dataset and strong correlations among the heavy metals favors the use of co-simulation instead of independent simulation in the probability mapping of heavy metal risks in the study area. The strong correlation of Co and Mn to iron infers they are of lithogenic origin, unlike Pb which had weak correlation pointing to its source in the area being of anthropogenic source. Manganese, Co and Fe show low enrichment, whereas Pb had high enrichment suggesting possible lead pollution. We, however, recommend that speciation of Pb in the soils rather than total concentration should be ascertained to infer chances of possible bioaccumulation, and subsequent health risk to human by chronic exposure.

Original languageEnglish
Pages (from-to)1-16
Number of pages16
JournalNatural Resources Research
DOIs
Publication statusAccepted/In press - Apr 16 2018
Externally publishedYes

Fingerprint

heavy metal
simulation
health risk
soil
geoaccumulation index
smelting
anthropogenic source
X-ray fluorescence
bioaccumulation
manganese
nickel
risk assessment
contamination
copper
iron
pollution
animal
sampling
mineral

All Science Journal Classification (ASJC) codes

  • Environmental Science(all)

Cite this

@article{5dd7f26f5074402caf275f9727a6cdbc,
title = "Multivariate Mapping of Heavy Metals Spatial Contamination in a Cu–Ni Exploration Field (Botswana) Using Turning Bands Co-simulation Algorithm",
abstract = "With a mining-driven economy, Botswana has experienced increased geochemical exploration of minerals around existing mining towns. The mining and smelting of copper and nickel around Selibe-Phikwe in the Central Province are capable of releasing heavy metals including Pb, Fe, Mn, Co, Ni and Cu into the soil environments, thereby exposing humans, plants and animals to health risks. In this study, turning bands co-simulation, a multivariate geostatistical algorithm, was presented as a tool for spatial uncertainty quantification and probability mapping of cross-correlated heavy metals (Co, Mn, Fe and Pb) risk assessment in a semiarid Cu–Ni exploration field of Botswana. A total of 1050 soil samples were collected across the field at a depth of ~ 10 cm in a grid sampling design. Rapid elemental concentration analysis was done using an Olympus Delta Sigma portable X-ray fluorescence device. Enrichment factor, geoaccumulation index and pollution load index were used to assess the potential risk of heavy metals contamination in soils. The partially heterotopic nature of the dataset and strong correlations among the heavy metals favors the use of co-simulation instead of independent simulation in the probability mapping of heavy metal risks in the study area. The strong correlation of Co and Mn to iron infers they are of lithogenic origin, unlike Pb which had weak correlation pointing to its source in the area being of anthropogenic source. Manganese, Co and Fe show low enrichment, whereas Pb had high enrichment suggesting possible lead pollution. We, however, recommend that speciation of Pb in the soils rather than total concentration should be ascertained to infer chances of possible bioaccumulation, and subsequent health risk to human by chronic exposure.",
author = "Eze, {Peter N.} and Nasser Madani and Adoko, {Amoussou Coffi}",
year = "2018",
month = "4",
day = "16",
doi = "10.1007/s11053-018-9378-3",
language = "English",
pages = "1--16",
journal = "Natural Resources Research",
issn = "1520-7439",
publisher = "Springer Netherlands",

}

TY - JOUR

T1 - Multivariate Mapping of Heavy Metals Spatial Contamination in a Cu–Ni Exploration Field (Botswana) Using Turning Bands Co-simulation Algorithm

AU - Eze, Peter N.

AU - Madani, Nasser

AU - Adoko, Amoussou Coffi

PY - 2018/4/16

Y1 - 2018/4/16

N2 - With a mining-driven economy, Botswana has experienced increased geochemical exploration of minerals around existing mining towns. The mining and smelting of copper and nickel around Selibe-Phikwe in the Central Province are capable of releasing heavy metals including Pb, Fe, Mn, Co, Ni and Cu into the soil environments, thereby exposing humans, plants and animals to health risks. In this study, turning bands co-simulation, a multivariate geostatistical algorithm, was presented as a tool for spatial uncertainty quantification and probability mapping of cross-correlated heavy metals (Co, Mn, Fe and Pb) risk assessment in a semiarid Cu–Ni exploration field of Botswana. A total of 1050 soil samples were collected across the field at a depth of ~ 10 cm in a grid sampling design. Rapid elemental concentration analysis was done using an Olympus Delta Sigma portable X-ray fluorescence device. Enrichment factor, geoaccumulation index and pollution load index were used to assess the potential risk of heavy metals contamination in soils. The partially heterotopic nature of the dataset and strong correlations among the heavy metals favors the use of co-simulation instead of independent simulation in the probability mapping of heavy metal risks in the study area. The strong correlation of Co and Mn to iron infers they are of lithogenic origin, unlike Pb which had weak correlation pointing to its source in the area being of anthropogenic source. Manganese, Co and Fe show low enrichment, whereas Pb had high enrichment suggesting possible lead pollution. We, however, recommend that speciation of Pb in the soils rather than total concentration should be ascertained to infer chances of possible bioaccumulation, and subsequent health risk to human by chronic exposure.

AB - With a mining-driven economy, Botswana has experienced increased geochemical exploration of minerals around existing mining towns. The mining and smelting of copper and nickel around Selibe-Phikwe in the Central Province are capable of releasing heavy metals including Pb, Fe, Mn, Co, Ni and Cu into the soil environments, thereby exposing humans, plants and animals to health risks. In this study, turning bands co-simulation, a multivariate geostatistical algorithm, was presented as a tool for spatial uncertainty quantification and probability mapping of cross-correlated heavy metals (Co, Mn, Fe and Pb) risk assessment in a semiarid Cu–Ni exploration field of Botswana. A total of 1050 soil samples were collected across the field at a depth of ~ 10 cm in a grid sampling design. Rapid elemental concentration analysis was done using an Olympus Delta Sigma portable X-ray fluorescence device. Enrichment factor, geoaccumulation index and pollution load index were used to assess the potential risk of heavy metals contamination in soils. The partially heterotopic nature of the dataset and strong correlations among the heavy metals favors the use of co-simulation instead of independent simulation in the probability mapping of heavy metal risks in the study area. The strong correlation of Co and Mn to iron infers they are of lithogenic origin, unlike Pb which had weak correlation pointing to its source in the area being of anthropogenic source. Manganese, Co and Fe show low enrichment, whereas Pb had high enrichment suggesting possible lead pollution. We, however, recommend that speciation of Pb in the soils rather than total concentration should be ascertained to infer chances of possible bioaccumulation, and subsequent health risk to human by chronic exposure.

UR - http://www.scopus.com/inward/record.url?scp=85045299346&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85045299346&partnerID=8YFLogxK

U2 - 10.1007/s11053-018-9378-3

DO - 10.1007/s11053-018-9378-3

M3 - Article

SP - 1

EP - 16

JO - Natural Resources Research

JF - Natural Resources Research

SN - 1520-7439

ER -