Modulation instability in nonlinear metamaterials modeled by a cubic-quintic complex Ginzburg-Landau equation beyond the slowly varying envelope approximation

Laure Tiam Megne, Conrad Bertrand Tabi, Timoléon Crépin Kofane

Research output: Contribution to journalArticlepeer-review

Abstract

Considering the theory of electromagnetic waves from the Maxwell's equations, we introduce a (3+1)-dimensionsal cubic-quintic complex Ginzburg-Landau equation describing the dynamics of dissipative light bullets in nonlinear metamaterials. The model equation, which is derived beyond the slowly varying envelope approximation, includes the effects of diffraction, dispersion, loss, gain, cubic, and quintic nonlinearities, as well as cubic and quintic self-steepening effects. The modulational instability of the plane waves is studied both theoretically, using the linear stability analysis, and numerically, using direct simulations of the Fourier space of the proposed nonlinear wave equation, based on the Drude model. The linear theory predicts instability for any amplitude of the primary wave. Also, in the linear stability analysis, self-steepening effects of different orders are confronted and one discusses their effects on the behavior of the gain spectrum under both normal and anomalous group-velocity dispersion regimes. Analytical results are equally confronted to direct numerical simulations and fully agree with the predictions from the gain spectra. Modulational instability is manifested by clusters of solitons and multihump and dromion-like structures, whose emergence and features depend not only on system parameters, such as the cubic and quintic self-steepening coefficients, but also on the propagation distance under a suitable balance between nonlinear and dispersive effects.

Original languageEnglish
Article number042207
JournalPhysical Review E
Volume102
Issue number4
DOIs
Publication statusPublished - Oct 2020

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Modulation instability in nonlinear metamaterials modeled by a cubic-quintic complex Ginzburg-Landau equation beyond the slowly varying envelope approximation'. Together they form a unique fingerprint.

Cite this