TY - JOUR
T1 - Involutions and Brauer-Severi varieties
AU - Gatsinzi, J.-B.
AU - Tignol, J.-P.
PY - 1996
Y1 - 1996
N2 - For an arbitrary finite-dimensional central simple algebra A, we define central simple algebras s2A and λ2A which are Brauer-equivalent to A ⊗ A. Following an idea of Tamagawa, a correspondence between involutions on A and rational points on the Brauer-Severi varieties of s2Aop and λ2Aop is established in a characteristic-free context.
AB - For an arbitrary finite-dimensional central simple algebra A, we define central simple algebras s2A and λ2A which are Brauer-equivalent to A ⊗ A. Following an idea of Tamagawa, a correspondence between involutions on A and rational points on the Brauer-Severi varieties of s2Aop and λ2Aop is established in a characteristic-free context.
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-0030591385&origin=resultslist&sort=plf-f&src=s&st1=Involutions+and+Brauer-Severi+varieties&st2=&sid=d3c326d308d5a99f317c2b7e1d1810da&sot=b&sdt=b&sl=54&s=TITLE-ABS-KEY%28Involutions+and+Brauer-Severi+varieties%29&relpos=1&citeCnt=0&searchTerm=
U2 - https://doi.org/10.1016/0019-3577(96)85086-5
DO - https://doi.org/10.1016/0019-3577(96)85086-5
M3 - Article
SN - 0019-3577
VL - 7
SP - 149
EP - 160
JO - Indagationes Mathematicae
JF - Indagationes Mathematicae
IS - 2
ER -