Hyperbolic equations of Von Karman type on Kähler manifolds

Pascal Cherrier, Albert Milani

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

We study a hyperbolic version of a system of Von Karman type on a compact Kähler manifold of complex dimension m≥ 2, and prove the local well-posedness of the corresponding Cauchy problem in a suitable function space frame, as well as an almost global existence result if the initial values are sufficiently small.

Original languageEnglish
Pages (from-to)19-36
Number of pages18
JournalBulletin des Sciences Mathematiques
Volume136
Issue number1
DOIs
Publication statusPublished - Jan 1 2012

Fingerprint

Local Well-posedness
Hyperbolic Equations
Compact Manifold
Function Space
Global Existence
Existence Results
Cauchy Problem

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Cite this

@article{b301ec180029402c8d5c56e219dcbfde,
title = "Hyperbolic equations of Von Karman type on K{\"a}hler manifolds",
abstract = "We study a hyperbolic version of a system of Von Karman type on a compact K{\"a}hler manifold of complex dimension m≥ 2, and prove the local well-posedness of the corresponding Cauchy problem in a suitable function space frame, as well as an almost global existence result if the initial values are sufficiently small.",
author = "Pascal Cherrier and Albert Milani",
year = "2012",
month = "1",
day = "1",
doi = "10.1016/j.bulsci.2011.07.017",
language = "English",
volume = "136",
pages = "19--36",
journal = "Bulletin des Sciences Mathematiques",
issn = "0007-4497",
publisher = "Elsevier Masson SAS",
number = "1",

}

Hyperbolic equations of Von Karman type on Kähler manifolds. / Cherrier, Pascal; Milani, Albert.

In: Bulletin des Sciences Mathematiques, Vol. 136, No. 1, 01.01.2012, p. 19-36.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Hyperbolic equations of Von Karman type on Kähler manifolds

AU - Cherrier, Pascal

AU - Milani, Albert

PY - 2012/1/1

Y1 - 2012/1/1

N2 - We study a hyperbolic version of a system of Von Karman type on a compact Kähler manifold of complex dimension m≥ 2, and prove the local well-posedness of the corresponding Cauchy problem in a suitable function space frame, as well as an almost global existence result if the initial values are sufficiently small.

AB - We study a hyperbolic version of a system of Von Karman type on a compact Kähler manifold of complex dimension m≥ 2, and prove the local well-posedness of the corresponding Cauchy problem in a suitable function space frame, as well as an almost global existence result if the initial values are sufficiently small.

UR - http://www.scopus.com/inward/record.url?scp=84855856873&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84855856873&partnerID=8YFLogxK

U2 - 10.1016/j.bulsci.2011.07.017

DO - 10.1016/j.bulsci.2011.07.017

M3 - Article

VL - 136

SP - 19

EP - 36

JO - Bulletin des Sciences Mathematiques

JF - Bulletin des Sciences Mathematiques

SN - 0007-4497

IS - 1

ER -