Fretting corrosion behaviour of Ti-6Al-4V reinforced with zirconia in foetal bovine serum

Lerato Semetse, Babatunde Abiodun Obadele, Lerato Raganya, Jean Geringer, Peter Apata Olubambi

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Fretting corrosion is a critical challenge in the design of hip prosthesis used in total hip arthroplasty (THA) surgeries. Currently, the design of hip implants includes a tapered junction which introduces additional interfaces that connect different parts of the hip implant such as the femoral neck and head or stem and neck interface. Micro motions that occur under the influence of load, together with chemical changes in the host environment, make these interfaces susceptible to tribocorrosion processes, particularly fretting corrosion. Commonly used metallic biomaterials are based on stainless steels, cobalt chrome-based alloys as well as titanium and titanium alloys. Each of these materials possess some degree of limitations, particularly where tribocorrosion events are concerned. Titanium alloy Ti-6Al-4V is widely used in biomedical applications for non-bearing components of total joint arthroplasty (TJA) surgeries. Its poor wear resistance continues to remain a challenge in load-bearing joints where parts articulate against one another as in the case of modular junctions. Some of the attempts made to improve the wear properties of Ti-6Al-4V is through the incorporation of second phase particles like ceramics in its matrix to produce metal matrix composites of Ti-6Al-4V. The aim of this work is to investigate the effect of zirconia reinforcement on spark plasma sintered Ti-6Al-4V composites (zirconium oxide particles incorporated into Ti-6Al-4V matrix) on the fretting corrosion properties of Ti-6Al-4V. Fretting corrosion tests were carried out on as-sintered Ti-6Al-4V and Ti-6Al-4V with 5 and 10 wt.% ZrO2. The tests were carried out in foetal bovine serum under applied normal loads of 85 and 115 N using the cylinder-on-flat contact configuration. The evolution of OCP, dissipated energy and friction coefficient were recorded throughout the test. Microstructural analysis of the samples before fretting corrosion tests showed the presence of globular agglomerates throughout the Ti-6Al-4V matrix due to zirconia additions; the volume of the agglomerates was higher in the composites having 10 wt.% ZrO2. Ti-6Al-4V composites having zirconia additions produced a nobler OCP during fretting in foetal bovine serum, compared to pure Ti-6Al-4V. Furthermore, the fretting corrosion results showed a significant improvement in the tribocorrosion resistance of Ti-6Al-4V with 10 wt.% ZrO2 at all loads. This composition also produced the least amount of degradation. and metal ion release. Mechanical data showed that increasing the applied normal load promoted a transition from gross slip to partial slip conditions for all compositions. Partial slip was found to be prevalent at a higher normal load (drastic decrease of the dissipated energy and consequently the friction coefficient). This mechanical condition prevents a large amount of degradation.

Original languageEnglish
Article number103392
JournalJournal of the Mechanical Behavior of Biomedical Materials
Volume100
DOIs
Publication statusPublished - Dec 2019
Externally publishedYes

Fingerprint

Fretting corrosion
Zirconia
Titanium alloys
Arthroplasty
Composite materials
Surgery
Bearings (structural)
Friction
Hip prostheses
Degradation
Stainless Steel
Biocompatible Materials
Cobalt
Chemical analysis
Electric sparks
Biomaterials
Wear resistance
Metal ions
zirconium oxide
Loads (forces)

All Science Journal Classification (ASJC) codes

  • Biomaterials
  • Biomedical Engineering
  • Mechanics of Materials

Cite this

@article{920c25a586fd4ae9a7045e45087b6a08,
title = "Fretting corrosion behaviour of Ti-6Al-4V reinforced with zirconia in foetal bovine serum",
abstract = "Fretting corrosion is a critical challenge in the design of hip prosthesis used in total hip arthroplasty (THA) surgeries. Currently, the design of hip implants includes a tapered junction which introduces additional interfaces that connect different parts of the hip implant such as the femoral neck and head or stem and neck interface. Micro motions that occur under the influence of load, together with chemical changes in the host environment, make these interfaces susceptible to tribocorrosion processes, particularly fretting corrosion. Commonly used metallic biomaterials are based on stainless steels, cobalt chrome-based alloys as well as titanium and titanium alloys. Each of these materials possess some degree of limitations, particularly where tribocorrosion events are concerned. Titanium alloy Ti-6Al-4V is widely used in biomedical applications for non-bearing components of total joint arthroplasty (TJA) surgeries. Its poor wear resistance continues to remain a challenge in load-bearing joints where parts articulate against one another as in the case of modular junctions. Some of the attempts made to improve the wear properties of Ti-6Al-4V is through the incorporation of second phase particles like ceramics in its matrix to produce metal matrix composites of Ti-6Al-4V. The aim of this work is to investigate the effect of zirconia reinforcement on spark plasma sintered Ti-6Al-4V composites (zirconium oxide particles incorporated into Ti-6Al-4V matrix) on the fretting corrosion properties of Ti-6Al-4V. Fretting corrosion tests were carried out on as-sintered Ti-6Al-4V and Ti-6Al-4V with 5 and 10 wt.{\%} ZrO2. The tests were carried out in foetal bovine serum under applied normal loads of 85 and 115 N using the cylinder-on-flat contact configuration. The evolution of OCP, dissipated energy and friction coefficient were recorded throughout the test. Microstructural analysis of the samples before fretting corrosion tests showed the presence of globular agglomerates throughout the Ti-6Al-4V matrix due to zirconia additions; the volume of the agglomerates was higher in the composites having 10 wt.{\%} ZrO2. Ti-6Al-4V composites having zirconia additions produced a nobler OCP during fretting in foetal bovine serum, compared to pure Ti-6Al-4V. Furthermore, the fretting corrosion results showed a significant improvement in the tribocorrosion resistance of Ti-6Al-4V with 10 wt.{\%} ZrO2 at all loads. This composition also produced the least amount of degradation. and metal ion release. Mechanical data showed that increasing the applied normal load promoted a transition from gross slip to partial slip conditions for all compositions. Partial slip was found to be prevalent at a higher normal load (drastic decrease of the dissipated energy and consequently the friction coefficient). This mechanical condition prevents a large amount of degradation.",
author = "Lerato Semetse and Obadele, {Babatunde Abiodun} and Lerato Raganya and Jean Geringer and Olubambi, {Peter Apata}",
year = "2019",
month = "12",
doi = "10.1016/j.jmbbm.2019.103392",
language = "English",
volume = "100",
journal = "Journal of the Mechanical Behavior of Biomedical Materials",
issn = "1751-6161",
publisher = "Elsevier BV",

}

Fretting corrosion behaviour of Ti-6Al-4V reinforced with zirconia in foetal bovine serum. / Semetse, Lerato; Obadele, Babatunde Abiodun; Raganya, Lerato; Geringer, Jean; Olubambi, Peter Apata.

In: Journal of the Mechanical Behavior of Biomedical Materials, Vol. 100, 103392, 12.2019.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Fretting corrosion behaviour of Ti-6Al-4V reinforced with zirconia in foetal bovine serum

AU - Semetse, Lerato

AU - Obadele, Babatunde Abiodun

AU - Raganya, Lerato

AU - Geringer, Jean

AU - Olubambi, Peter Apata

PY - 2019/12

Y1 - 2019/12

N2 - Fretting corrosion is a critical challenge in the design of hip prosthesis used in total hip arthroplasty (THA) surgeries. Currently, the design of hip implants includes a tapered junction which introduces additional interfaces that connect different parts of the hip implant such as the femoral neck and head or stem and neck interface. Micro motions that occur under the influence of load, together with chemical changes in the host environment, make these interfaces susceptible to tribocorrosion processes, particularly fretting corrosion. Commonly used metallic biomaterials are based on stainless steels, cobalt chrome-based alloys as well as titanium and titanium alloys. Each of these materials possess some degree of limitations, particularly where tribocorrosion events are concerned. Titanium alloy Ti-6Al-4V is widely used in biomedical applications for non-bearing components of total joint arthroplasty (TJA) surgeries. Its poor wear resistance continues to remain a challenge in load-bearing joints where parts articulate against one another as in the case of modular junctions. Some of the attempts made to improve the wear properties of Ti-6Al-4V is through the incorporation of second phase particles like ceramics in its matrix to produce metal matrix composites of Ti-6Al-4V. The aim of this work is to investigate the effect of zirconia reinforcement on spark plasma sintered Ti-6Al-4V composites (zirconium oxide particles incorporated into Ti-6Al-4V matrix) on the fretting corrosion properties of Ti-6Al-4V. Fretting corrosion tests were carried out on as-sintered Ti-6Al-4V and Ti-6Al-4V with 5 and 10 wt.% ZrO2. The tests were carried out in foetal bovine serum under applied normal loads of 85 and 115 N using the cylinder-on-flat contact configuration. The evolution of OCP, dissipated energy and friction coefficient were recorded throughout the test. Microstructural analysis of the samples before fretting corrosion tests showed the presence of globular agglomerates throughout the Ti-6Al-4V matrix due to zirconia additions; the volume of the agglomerates was higher in the composites having 10 wt.% ZrO2. Ti-6Al-4V composites having zirconia additions produced a nobler OCP during fretting in foetal bovine serum, compared to pure Ti-6Al-4V. Furthermore, the fretting corrosion results showed a significant improvement in the tribocorrosion resistance of Ti-6Al-4V with 10 wt.% ZrO2 at all loads. This composition also produced the least amount of degradation. and metal ion release. Mechanical data showed that increasing the applied normal load promoted a transition from gross slip to partial slip conditions for all compositions. Partial slip was found to be prevalent at a higher normal load (drastic decrease of the dissipated energy and consequently the friction coefficient). This mechanical condition prevents a large amount of degradation.

AB - Fretting corrosion is a critical challenge in the design of hip prosthesis used in total hip arthroplasty (THA) surgeries. Currently, the design of hip implants includes a tapered junction which introduces additional interfaces that connect different parts of the hip implant such as the femoral neck and head or stem and neck interface. Micro motions that occur under the influence of load, together with chemical changes in the host environment, make these interfaces susceptible to tribocorrosion processes, particularly fretting corrosion. Commonly used metallic biomaterials are based on stainless steels, cobalt chrome-based alloys as well as titanium and titanium alloys. Each of these materials possess some degree of limitations, particularly where tribocorrosion events are concerned. Titanium alloy Ti-6Al-4V is widely used in biomedical applications for non-bearing components of total joint arthroplasty (TJA) surgeries. Its poor wear resistance continues to remain a challenge in load-bearing joints where parts articulate against one another as in the case of modular junctions. Some of the attempts made to improve the wear properties of Ti-6Al-4V is through the incorporation of second phase particles like ceramics in its matrix to produce metal matrix composites of Ti-6Al-4V. The aim of this work is to investigate the effect of zirconia reinforcement on spark plasma sintered Ti-6Al-4V composites (zirconium oxide particles incorporated into Ti-6Al-4V matrix) on the fretting corrosion properties of Ti-6Al-4V. Fretting corrosion tests were carried out on as-sintered Ti-6Al-4V and Ti-6Al-4V with 5 and 10 wt.% ZrO2. The tests were carried out in foetal bovine serum under applied normal loads of 85 and 115 N using the cylinder-on-flat contact configuration. The evolution of OCP, dissipated energy and friction coefficient were recorded throughout the test. Microstructural analysis of the samples before fretting corrosion tests showed the presence of globular agglomerates throughout the Ti-6Al-4V matrix due to zirconia additions; the volume of the agglomerates was higher in the composites having 10 wt.% ZrO2. Ti-6Al-4V composites having zirconia additions produced a nobler OCP during fretting in foetal bovine serum, compared to pure Ti-6Al-4V. Furthermore, the fretting corrosion results showed a significant improvement in the tribocorrosion resistance of Ti-6Al-4V with 10 wt.% ZrO2 at all loads. This composition also produced the least amount of degradation. and metal ion release. Mechanical data showed that increasing the applied normal load promoted a transition from gross slip to partial slip conditions for all compositions. Partial slip was found to be prevalent at a higher normal load (drastic decrease of the dissipated energy and consequently the friction coefficient). This mechanical condition prevents a large amount of degradation.

UR - http://www.scopus.com/inward/record.url?scp=85070706505&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85070706505&partnerID=8YFLogxK

U2 - 10.1016/j.jmbbm.2019.103392

DO - 10.1016/j.jmbbm.2019.103392

M3 - Article

C2 - 31430704

AN - SCOPUS:85070706505

VL - 100

JO - Journal of the Mechanical Behavior of Biomedical Materials

JF - Journal of the Mechanical Behavior of Biomedical Materials

SN - 1751-6161

M1 - 103392

ER -