### Abstract

Original language | English |
---|---|

Title of host publication | Journal of Magnetism and Magnetic Materials |

Publisher | Elsevier B.V. |

Pages | 38-45 |

Number of pages | 8 |

ISBN (Print) | 0277-6715 (Print)\r0277-6715 (Linking) |

DOIs | |

Publication status | Published - Jun 15 2018 |

### Publication series

Name | Journal of Magnetism and Magnetic Materials |
---|---|

Volume | 456 |

### Fingerprint

### Cite this

*Journal of Magnetism and Magnetic Materials*(pp. 38-45). (Journal of Magnetism and Magnetic Materials; Vol. 456). Elsevier B.V.. https://doi.org/10.1016/j.jmmm.2018.01.079

}

*Journal of Magnetism and Magnetic Materials.*Journal of Magnetism and Magnetic Materials, vol. 456, Elsevier B.V., pp. 38-45. https://doi.org/10.1016/j.jmmm.2018.01.079

**Fractional blood flow in oscillatory arteries with thermal radiation and magnetic field effects.** / Bansi, C. D.K.; Tabi, C. B.; Motsumi, T. G.; Mohamadou, A.

Research output: Chapter in Book/Report/Conference proceeding › Chapter

TY - CHAP

T1 - Fractional blood flow in oscillatory arteries with thermal radiation and magnetic field effects

AU - Bansi, C. D.K.

AU - Tabi, C. B.

AU - Motsumi, T. G.

AU - Mohamadou, A.

PY - 2018/6/15

Y1 - 2018/6/15

N2 - A fractional model is proposed to study the effect of heat transfer and magnetic field on the blood flowing inside oscillatory arteries. The flow is due to periodic pressure gradient and the fractional model equations include body acceleration. The proposed velocity and temperature distribution equations are solved using the Laplace and Hankel transforms. The effect of the fluid parameters such as the Reynolds number (Re), the magnetic parameter (M) and the radiation parameter (N) is studied graphically with changing the fractional-order parameter. It is found that the fractional derivative is a valuable tool to control both the temperature and velocity of blood when flow parameters change under treatment, for example. Besides, this work highlights the fact that in the presence of strong magnetic field, blood velocity and temperature reduce. A reversed effect is observed where the applied thermal radiation increase; the velocity and temperature of blood increase. However, the temperature remains high around the artery centerline, which is appropriate during treatment to avoid tissues damage.

AB - A fractional model is proposed to study the effect of heat transfer and magnetic field on the blood flowing inside oscillatory arteries. The flow is due to periodic pressure gradient and the fractional model equations include body acceleration. The proposed velocity and temperature distribution equations are solved using the Laplace and Hankel transforms. The effect of the fluid parameters such as the Reynolds number (Re), the magnetic parameter (M) and the radiation parameter (N) is studied graphically with changing the fractional-order parameter. It is found that the fractional derivative is a valuable tool to control both the temperature and velocity of blood when flow parameters change under treatment, for example. Besides, this work highlights the fact that in the presence of strong magnetic field, blood velocity and temperature reduce. A reversed effect is observed where the applied thermal radiation increase; the velocity and temperature of blood increase. However, the temperature remains high around the artery centerline, which is appropriate during treatment to avoid tissues damage.

UR - https://doi.org/10.1016/j.jmmm.2018.01.079

U2 - 10.1016/j.jmmm.2018.01.079

DO - 10.1016/j.jmmm.2018.01.079

M3 - Chapter

C2 - 16810711

SN - 0277-6715 (Print)\r0277-6715 (Linking)

T3 - Journal of Magnetism and Magnetic Materials

SP - 38

EP - 45

BT - Journal of Magnetism and Magnetic Materials

PB - Elsevier B.V.

ER -