Delay bounded multi-source multicast in software-defined networking

Thabo Semong, Kun Xie, Xuhui Zhou, Hemant Kumar Singh, Zhetao Li

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Software-Defined Networking (SDN) is the next generation network architecture with exciting application prospects. The control function in SDN is decoupled from the data forwarding plane, hence it provides a new centralized architecture with flexible network resource management. Although SDN is attracting much attention from both industry and research, its advantage over the traditional networks has not been fully utilized. Multicast is designed to deliver content to multiple destinations. The current traffic engineering in SDN focuses mainly on unicast, however, multicast can effectively reduce network resource consumption by serving multiple clients. This paper studies a novel delay-bounded multi-source multicast SDN problem, in which among the set of potential sources, we select a source to build the multicast-tree, under the constraint that the transmission delay for every destination is bounded. This problem is more difficult than the traditional Steiner minimum tree (SMT) problem, since it needs to find a source from the set of all potential sources. We model the problem as a mixed-integer linear programming (MILP) and prove its NP-Hardness. To solve the problem, a delay bounded multi-source (DBMS) scheme is proposed, which includes a DBMS algorithm to build a minimum delay cost DBMS-Forest. Through a MATLAB experiment, we demonstrate that DBMS is significantly more efficient and outperforms other existing algorithms in the literature.

Original languageEnglish
Article number10
JournalElectronics (Switzerland)
Volume7
Issue number1
DOIs
Publication statusPublished - Jan 21 2018

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Signal Processing
  • Hardware and Architecture
  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Delay bounded multi-source multicast in software-defined networking'. Together they form a unique fingerprint.

  • Cite this