Decay estimates for quasi-linear evolution equations

Pascal Cherrier, Albert Milani

Research output: Contribution to journalArticle

Abstract

We consider global strong solutions of the quasi-linear evolution equations (1.1) and (1.2) below, corresponding to sufficiently small initial data, and prove some stability estimates, as t→+∞, that generalize the corresponding estimates in the linear case.

Original languageEnglish
Pages (from-to)33-58
Number of pages26
JournalBulletin des Sciences Mathematiques
Volume135
Issue number1
DOIs
Publication statusPublished - Jan 1 2011

Fingerprint

Decay Estimates
Stability Estimates
Quasilinear Equations
Strong Solution
Evolution Equation
Generalise
Estimate

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

Cite this

@article{1ce064bdc717402cbec60cb744f3c81c,
title = "Decay estimates for quasi-linear evolution equations",
abstract = "We consider global strong solutions of the quasi-linear evolution equations (1.1) and (1.2) below, corresponding to sufficiently small initial data, and prove some stability estimates, as t→+∞, that generalize the corresponding estimates in the linear case.",
author = "Pascal Cherrier and Albert Milani",
year = "2011",
month = "1",
day = "1",
doi = "10.1016/j.bulsci.2010.04.004",
language = "English",
volume = "135",
pages = "33--58",
journal = "Bulletin des Sciences Mathematiques",
issn = "0007-4497",
publisher = "Elsevier Masson SAS",
number = "1",

}

Decay estimates for quasi-linear evolution equations. / Cherrier, Pascal; Milani, Albert.

In: Bulletin des Sciences Mathematiques, Vol. 135, No. 1, 01.01.2011, p. 33-58.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Decay estimates for quasi-linear evolution equations

AU - Cherrier, Pascal

AU - Milani, Albert

PY - 2011/1/1

Y1 - 2011/1/1

N2 - We consider global strong solutions of the quasi-linear evolution equations (1.1) and (1.2) below, corresponding to sufficiently small initial data, and prove some stability estimates, as t→+∞, that generalize the corresponding estimates in the linear case.

AB - We consider global strong solutions of the quasi-linear evolution equations (1.1) and (1.2) below, corresponding to sufficiently small initial data, and prove some stability estimates, as t→+∞, that generalize the corresponding estimates in the linear case.

UR - http://www.scopus.com/inward/record.url?scp=78751575762&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=78751575762&partnerID=8YFLogxK

U2 - 10.1016/j.bulsci.2010.04.004

DO - 10.1016/j.bulsci.2010.04.004

M3 - Article

VL - 135

SP - 33

EP - 58

JO - Bulletin des Sciences Mathematiques

JF - Bulletin des Sciences Mathematiques

SN - 0007-4497

IS - 1

ER -