Comparison of fresh and graduate engineering students' design conceptualisation process

E. O. Olakanmi, R. Addo-Tenkorang, B. Nthubu, O. P. Oladijo, M. T. Oladiran, J. Katende

Research output: Contribution to conferencePaper

Abstract

21st century engineering graduates should be proficient in engaging their conceptual thinking and analytical capabilities to proffer solutions to societal problems. Various literatures dwelling on problem-solving skills indicate that fresh engineering undergraduates are not adept at conceptualising solutions to design problems. However, the process of conceptualising solutions to design problems has not been well developed, understood and managed in many engineering curricula. In order to illuminate our understanding in regards to how engineering students conceptualise solutions to design problems at various stages of their educational programme, ten fresh engineering undergraduate and ten engineering postgraduate students were interviewed with a view to exploring: (i) what approaches they employ in identifying design problems? (ii) how they determine the relevance of the identified design problems to the needs of their community? (iii) how they conceptualise design solutions to the identified problems? and (iv) how they organise information when conceptualising solutions to design problems? Subsequent analysis of the responses reveals the existence of variation in the design conceptualisation process of fresh undergraduates and postgraduates. It was established that postgraduate students tend to use broader and more complex strategies in conceptualising solutions to design problems as compared to fresh undergraduates. Furthermore, postgraduate students employed experience, information sources, and prior knowledge acquired from various subject domains to conceptualise solutions to design problems whereas fresh engineering students could only employ previous experience and information sources to identify design problems relevant to their community needs but lack the capability to engage their prior knowledge to conceptualise solutions to design problems. Finally, these findings are expected to assist engineering educators to further understand how to develop an introduction to engineering curriculum to equip students with relevant and core engineering analytical skills for conceptualising solutions to design problems.

Original languageEnglish
Publication statusPublished - Jan 1 2016
Event44th Annual Conference of the European Society for Engineering Education - Engineering Education on Top of the World: Industry-University Cooperation, SEFI 2016 - Tampere, Finland
Duration: Sep 12 2016Sep 15 2016

Other

Other44th Annual Conference of the European Society for Engineering Education - Engineering Education on Top of the World: Industry-University Cooperation, SEFI 2016
CountryFinland
CityTampere
Period9/12/169/15/16

Fingerprint

graduate
Students
engineering
student
Curricula
curriculum
educational program
knowledge
community
experience
educator
lack

All Science Journal Classification (ASJC) codes

  • Engineering(all)
  • Education

Cite this

Olakanmi, E. O., Addo-Tenkorang, R., Nthubu, B., Oladijo, O. P., Oladiran, M. T., & Katende, J. (2016). Comparison of fresh and graduate engineering students' design conceptualisation process. Paper presented at 44th Annual Conference of the European Society for Engineering Education - Engineering Education on Top of the World: Industry-University Cooperation, SEFI 2016, Tampere, Finland.
Olakanmi, E. O. ; Addo-Tenkorang, R. ; Nthubu, B. ; Oladijo, O. P. ; Oladiran, M. T. ; Katende, J. / Comparison of fresh and graduate engineering students' design conceptualisation process. Paper presented at 44th Annual Conference of the European Society for Engineering Education - Engineering Education on Top of the World: Industry-University Cooperation, SEFI 2016, Tampere, Finland.
@conference{ff5ac895cfd04cf0ac6d89be550a611c,
title = "Comparison of fresh and graduate engineering students' design conceptualisation process",
abstract = "21st century engineering graduates should be proficient in engaging their conceptual thinking and analytical capabilities to proffer solutions to societal problems. Various literatures dwelling on problem-solving skills indicate that fresh engineering undergraduates are not adept at conceptualising solutions to design problems. However, the process of conceptualising solutions to design problems has not been well developed, understood and managed in many engineering curricula. In order to illuminate our understanding in regards to how engineering students conceptualise solutions to design problems at various stages of their educational programme, ten fresh engineering undergraduate and ten engineering postgraduate students were interviewed with a view to exploring: (i) what approaches they employ in identifying design problems? (ii) how they determine the relevance of the identified design problems to the needs of their community? (iii) how they conceptualise design solutions to the identified problems? and (iv) how they organise information when conceptualising solutions to design problems? Subsequent analysis of the responses reveals the existence of variation in the design conceptualisation process of fresh undergraduates and postgraduates. It was established that postgraduate students tend to use broader and more complex strategies in conceptualising solutions to design problems as compared to fresh undergraduates. Furthermore, postgraduate students employed experience, information sources, and prior knowledge acquired from various subject domains to conceptualise solutions to design problems whereas fresh engineering students could only employ previous experience and information sources to identify design problems relevant to their community needs but lack the capability to engage their prior knowledge to conceptualise solutions to design problems. Finally, these findings are expected to assist engineering educators to further understand how to develop an introduction to engineering curriculum to equip students with relevant and core engineering analytical skills for conceptualising solutions to design problems.",
author = "Olakanmi, {E. O.} and R. Addo-Tenkorang and B. Nthubu and Oladijo, {O. P.} and Oladiran, {M. T.} and J. Katende",
year = "2016",
month = "1",
day = "1",
language = "English",
note = "44th Annual Conference of the European Society for Engineering Education - Engineering Education on Top of the World: Industry-University Cooperation, SEFI 2016 ; Conference date: 12-09-2016 Through 15-09-2016",

}

Olakanmi, EO, Addo-Tenkorang, R, Nthubu, B, Oladijo, OP, Oladiran, MT & Katende, J 2016, 'Comparison of fresh and graduate engineering students' design conceptualisation process' Paper presented at 44th Annual Conference of the European Society for Engineering Education - Engineering Education on Top of the World: Industry-University Cooperation, SEFI 2016, Tampere, Finland, 9/12/16 - 9/15/16, .

Comparison of fresh and graduate engineering students' design conceptualisation process. / Olakanmi, E. O.; Addo-Tenkorang, R.; Nthubu, B.; Oladijo, O. P.; Oladiran, M. T.; Katende, J.

2016. Paper presented at 44th Annual Conference of the European Society for Engineering Education - Engineering Education on Top of the World: Industry-University Cooperation, SEFI 2016, Tampere, Finland.

Research output: Contribution to conferencePaper

TY - CONF

T1 - Comparison of fresh and graduate engineering students' design conceptualisation process

AU - Olakanmi, E. O.

AU - Addo-Tenkorang, R.

AU - Nthubu, B.

AU - Oladijo, O. P.

AU - Oladiran, M. T.

AU - Katende, J.

PY - 2016/1/1

Y1 - 2016/1/1

N2 - 21st century engineering graduates should be proficient in engaging their conceptual thinking and analytical capabilities to proffer solutions to societal problems. Various literatures dwelling on problem-solving skills indicate that fresh engineering undergraduates are not adept at conceptualising solutions to design problems. However, the process of conceptualising solutions to design problems has not been well developed, understood and managed in many engineering curricula. In order to illuminate our understanding in regards to how engineering students conceptualise solutions to design problems at various stages of their educational programme, ten fresh engineering undergraduate and ten engineering postgraduate students were interviewed with a view to exploring: (i) what approaches they employ in identifying design problems? (ii) how they determine the relevance of the identified design problems to the needs of their community? (iii) how they conceptualise design solutions to the identified problems? and (iv) how they organise information when conceptualising solutions to design problems? Subsequent analysis of the responses reveals the existence of variation in the design conceptualisation process of fresh undergraduates and postgraduates. It was established that postgraduate students tend to use broader and more complex strategies in conceptualising solutions to design problems as compared to fresh undergraduates. Furthermore, postgraduate students employed experience, information sources, and prior knowledge acquired from various subject domains to conceptualise solutions to design problems whereas fresh engineering students could only employ previous experience and information sources to identify design problems relevant to their community needs but lack the capability to engage their prior knowledge to conceptualise solutions to design problems. Finally, these findings are expected to assist engineering educators to further understand how to develop an introduction to engineering curriculum to equip students with relevant and core engineering analytical skills for conceptualising solutions to design problems.

AB - 21st century engineering graduates should be proficient in engaging their conceptual thinking and analytical capabilities to proffer solutions to societal problems. Various literatures dwelling on problem-solving skills indicate that fresh engineering undergraduates are not adept at conceptualising solutions to design problems. However, the process of conceptualising solutions to design problems has not been well developed, understood and managed in many engineering curricula. In order to illuminate our understanding in regards to how engineering students conceptualise solutions to design problems at various stages of their educational programme, ten fresh engineering undergraduate and ten engineering postgraduate students were interviewed with a view to exploring: (i) what approaches they employ in identifying design problems? (ii) how they determine the relevance of the identified design problems to the needs of their community? (iii) how they conceptualise design solutions to the identified problems? and (iv) how they organise information when conceptualising solutions to design problems? Subsequent analysis of the responses reveals the existence of variation in the design conceptualisation process of fresh undergraduates and postgraduates. It was established that postgraduate students tend to use broader and more complex strategies in conceptualising solutions to design problems as compared to fresh undergraduates. Furthermore, postgraduate students employed experience, information sources, and prior knowledge acquired from various subject domains to conceptualise solutions to design problems whereas fresh engineering students could only employ previous experience and information sources to identify design problems relevant to their community needs but lack the capability to engage their prior knowledge to conceptualise solutions to design problems. Finally, these findings are expected to assist engineering educators to further understand how to develop an introduction to engineering curriculum to equip students with relevant and core engineering analytical skills for conceptualising solutions to design problems.

UR - http://www.scopus.com/inward/record.url?scp=85014123060&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85014123060&partnerID=8YFLogxK

M3 - Paper

AN - SCOPUS:85014123060

ER -

Olakanmi EO, Addo-Tenkorang R, Nthubu B, Oladijo OP, Oladiran MT, Katende J. Comparison of fresh and graduate engineering students' design conceptualisation process. 2016. Paper presented at 44th Annual Conference of the European Society for Engineering Education - Engineering Education on Top of the World: Industry-University Cooperation, SEFI 2016, Tampere, Finland.