Cobalt (II) removal from synthetic wastewater by adsorption on South African coal fly ash

Evans T. Musapatika, Maurice S. Onyango, Aoyi Ochieng

Research output: Contribution to journalArticle

Abstract

Advanced wastewater-treatment techniques such as adsorption are essential in the removal of non-biodegradable toxic wastes from water. In this study, the use of South African coal fly ash, an industrial byproduct, has been investigated as a potential replacement for the current costly adsorbents used for removing heavy metals from wastewater. We utilised coal fly ash for the adsorption of cobalt(II) ions from synthetic petrochemical wastewater and characterised its performance. A two-level three-factor full-factorial design was successfully employed for experimental design and analysis of the results. The combined effects of pH, initial concentration and adsorbent dose on cobalt(II) removal were assessed using response surface methodology. Although the focus was on removal of cobalt(II), the adsorption was carried out in the presence of phenol and other heavy metal ions using the batch technique. The applicability of the Freundlich and Langmuir models to the equilibrium data was tested. Consequently, the equilibrium data was found to conform more favourably to the Freundlich isotherm than to the Langmuir isotherm; in this case, the coal fly ash had a maximum adsorption capacity of 0.401 mg/g for cobalt(II). We conclude that South African coal fly ash, as a natural, abundant and low-cost adsorbent, might be a suitable local alternative for elimination of cobalt(II) from aqueous solutions.
Original languageEnglish
Number of pages7
JournalSouth African Journal of Science
Volume9-10
Publication statusPublished - 2010

Fingerprint

coal fly ash
Coal Ash
Coal
cobalt
Waste Water
Cobalt
fly ash
Adsorption
wastewater
adsorption
Wastewater
coal
adsorbents
Adsorbents
Heavy Metals
Isotherms
isotherm
heavy metals
industrial byproducts
heavy metal

Cite this

@article{4b91c1a4059641b58f106f8f55ebd246,
title = "Cobalt (II) removal from synthetic wastewater by adsorption on South African coal fly ash",
abstract = "Advanced wastewater-treatment techniques such as adsorption are essential in the removal of non-biodegradable toxic wastes from water. In this study, the use of South African coal fly ash, an industrial byproduct, has been investigated as a potential replacement for the current costly adsorbents used for removing heavy metals from wastewater. We utilised coal fly ash for the adsorption of cobalt(II) ions from synthetic petrochemical wastewater and characterised its performance. A two-level three-factor full-factorial design was successfully employed for experimental design and analysis of the results. The combined effects of pH, initial concentration and adsorbent dose on cobalt(II) removal were assessed using response surface methodology. Although the focus was on removal of cobalt(II), the adsorption was carried out in the presence of phenol and other heavy metal ions using the batch technique. The applicability of the Freundlich and Langmuir models to the equilibrium data was tested. Consequently, the equilibrium data was found to conform more favourably to the Freundlich isotherm than to the Langmuir isotherm; in this case, the coal fly ash had a maximum adsorption capacity of 0.401 mg/g for cobalt(II). We conclude that South African coal fly ash, as a natural, abundant and low-cost adsorbent, might be a suitable local alternative for elimination of cobalt(II) from aqueous solutions.",
author = "Musapatika, {Evans T.} and Onyango, {Maurice S.} and Aoyi Ochieng",
year = "2010",
language = "English",
volume = "9-10",
journal = "South African Journal of Science",
issn = "0038-2353",
publisher = "National Research Foundation",

}

Cobalt (II) removal from synthetic wastewater by adsorption on South African coal fly ash. / Musapatika, Evans T.; Onyango, Maurice S.; Ochieng, Aoyi.

In: South African Journal of Science, Vol. 9-10, 2010.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Cobalt (II) removal from synthetic wastewater by adsorption on South African coal fly ash

AU - Musapatika, Evans T.

AU - Onyango, Maurice S.

AU - Ochieng, Aoyi

PY - 2010

Y1 - 2010

N2 - Advanced wastewater-treatment techniques such as adsorption are essential in the removal of non-biodegradable toxic wastes from water. In this study, the use of South African coal fly ash, an industrial byproduct, has been investigated as a potential replacement for the current costly adsorbents used for removing heavy metals from wastewater. We utilised coal fly ash for the adsorption of cobalt(II) ions from synthetic petrochemical wastewater and characterised its performance. A two-level three-factor full-factorial design was successfully employed for experimental design and analysis of the results. The combined effects of pH, initial concentration and adsorbent dose on cobalt(II) removal were assessed using response surface methodology. Although the focus was on removal of cobalt(II), the adsorption was carried out in the presence of phenol and other heavy metal ions using the batch technique. The applicability of the Freundlich and Langmuir models to the equilibrium data was tested. Consequently, the equilibrium data was found to conform more favourably to the Freundlich isotherm than to the Langmuir isotherm; in this case, the coal fly ash had a maximum adsorption capacity of 0.401 mg/g for cobalt(II). We conclude that South African coal fly ash, as a natural, abundant and low-cost adsorbent, might be a suitable local alternative for elimination of cobalt(II) from aqueous solutions.

AB - Advanced wastewater-treatment techniques such as adsorption are essential in the removal of non-biodegradable toxic wastes from water. In this study, the use of South African coal fly ash, an industrial byproduct, has been investigated as a potential replacement for the current costly adsorbents used for removing heavy metals from wastewater. We utilised coal fly ash for the adsorption of cobalt(II) ions from synthetic petrochemical wastewater and characterised its performance. A two-level three-factor full-factorial design was successfully employed for experimental design and analysis of the results. The combined effects of pH, initial concentration and adsorbent dose on cobalt(II) removal were assessed using response surface methodology. Although the focus was on removal of cobalt(II), the adsorption was carried out in the presence of phenol and other heavy metal ions using the batch technique. The applicability of the Freundlich and Langmuir models to the equilibrium data was tested. Consequently, the equilibrium data was found to conform more favourably to the Freundlich isotherm than to the Langmuir isotherm; in this case, the coal fly ash had a maximum adsorption capacity of 0.401 mg/g for cobalt(II). We conclude that South African coal fly ash, as a natural, abundant and low-cost adsorbent, might be a suitable local alternative for elimination of cobalt(II) from aqueous solutions.

M3 - Article

VL - 9-10

JO - South African Journal of Science

JF - South African Journal of Science

SN - 0038-2353

ER -