Chemical oxygen demand removal from electroplating wastewater by purified and polymer functionalized carbon nanotubes adsorbents

M.T. Bankole, A.S. Abdulkareem, J.O. Tijani, S.S. Ochigbo, A.S. Afolabi, W.D. Roos

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

This study investigated the removal of chemical oxygen demand (COD) from electroplating industry wastewater via batch adsorption by purified and polymers functionalized carbon nanotubes (CNTs) as nano-adsorbents. Bimetallic Fe-Co supported on CaCO3 was utilized to produce multi-walled carbon nanotubes (MWCNT) via the catalytic chemical vapor deposition (CCVD) technique. This was subsequently followed by the purification of the as-prepared MWCNTs by a mixture of HNO3 and H2SO4 in order to remove the support and metal particles. The purified MWCNTs was further functionalized using known mass of the following polymers: Amino polyethylene glycol (PEG), polyhydroxylbutyrate (PHB) and amino polyethylene glycol with polyhydroxylbutyrate (PEG-PHB). The purified (P-CNTs) and functionalized CNTs coded PEG-CNTs; PHB-CNTs, and PEG-PHB-CNTs were characterized by HRSEM, HRTEM-EDS, BET, XRD and XPS. The electroplating wastewater was subjected to physicochemical characterization before and after treatment with various prepared nano-adsorbents using standard methods. The adsorption process under the influence of contact time, adsorbent dosage and temperature was measured using the chemical oxygen demand (COD) as indicator parameter. The HRSEM/XRD/BET confirmed that the purified and polymer functionalized CNTs were homogeneously dispersed; highly graphitic in nature with fewer impurities and of high surface area (>145 m2/g). The order of maximum COD removal by the nano-adsorbents at equilibrium time of 70 min are as follows: PEG-CNTs (99.68%) > PHB-CNTs (97.89%) > P-CNTs (96.34%) > PEG/PHB-CNTs (95.42%). Equilibrium sorption data were better described by Freudlich isotherm with the correlation coefficient (R2>0.92) than Langmuir isotherm. The adsorption kinetics for COD removal from electroplating wastewater fitted well to the pseudo-second-order model with rate constant in the range of 4 × 10-5-1 × 10-4 (g mg-1 min-1). Thermodynamics analysis of the adsorption process revealed that the enthalpy (ΔH°) of the reaction was positive and endothermic in nature. The Gibbs free energy (ΔG°) was negative which showed the feasibility and spontaneity of adsorption process. The findings from this study support the potential use of PEG-functionalised CNTs as a nanoadsorbent to purify electroplating wastewater than others prepared sorbents. © 2017 Published by Elsevier B.V.
Original languageEnglish
Pages (from-to)33-50
Number of pages18
JournalWater Resources and Industry
Volume18
DOIs
Publication statusPublished - 2017

Fingerprint

chemical oxygen demand
polymer
wastewater
demand
spontaneity
adsorption
contact
energy
carbon nanotube
removal
industry
isotherm
X-ray diffraction
Gibbs free energy
enthalpy
time
X-ray spectroscopy
purification
sorption
surface area

Cite this

Bankole, M.T. ; Abdulkareem, A.S. ; Tijani, J.O. ; Ochigbo, S.S. ; Afolabi, A.S. ; Roos, W.D. / Chemical oxygen demand removal from electroplating wastewater by purified and polymer functionalized carbon nanotubes adsorbents. In: Water Resources and Industry. 2017 ; Vol. 18. pp. 33-50.
@article{1a18cb5ec6db420c9dfd75271b6f858d,
title = "Chemical oxygen demand removal from electroplating wastewater by purified and polymer functionalized carbon nanotubes adsorbents",
abstract = "This study investigated the removal of chemical oxygen demand (COD) from electroplating industry wastewater via batch adsorption by purified and polymers functionalized carbon nanotubes (CNTs) as nano-adsorbents. Bimetallic Fe-Co supported on CaCO3 was utilized to produce multi-walled carbon nanotubes (MWCNT) via the catalytic chemical vapor deposition (CCVD) technique. This was subsequently followed by the purification of the as-prepared MWCNTs by a mixture of HNO3 and H2SO4 in order to remove the support and metal particles. The purified MWCNTs was further functionalized using known mass of the following polymers: Amino polyethylene glycol (PEG), polyhydroxylbutyrate (PHB) and amino polyethylene glycol with polyhydroxylbutyrate (PEG-PHB). The purified (P-CNTs) and functionalized CNTs coded PEG-CNTs; PHB-CNTs, and PEG-PHB-CNTs were characterized by HRSEM, HRTEM-EDS, BET, XRD and XPS. The electroplating wastewater was subjected to physicochemical characterization before and after treatment with various prepared nano-adsorbents using standard methods. The adsorption process under the influence of contact time, adsorbent dosage and temperature was measured using the chemical oxygen demand (COD) as indicator parameter. The HRSEM/XRD/BET confirmed that the purified and polymer functionalized CNTs were homogeneously dispersed; highly graphitic in nature with fewer impurities and of high surface area (>145 m2/g). The order of maximum COD removal by the nano-adsorbents at equilibrium time of 70 min are as follows: PEG-CNTs (99.68{\%}) > PHB-CNTs (97.89{\%}) > P-CNTs (96.34{\%}) > PEG/PHB-CNTs (95.42{\%}). Equilibrium sorption data were better described by Freudlich isotherm with the correlation coefficient (R2>0.92) than Langmuir isotherm. The adsorption kinetics for COD removal from electroplating wastewater fitted well to the pseudo-second-order model with rate constant in the range of 4 × 10-5-1 × 10-4 (g mg-1 min-1). Thermodynamics analysis of the adsorption process revealed that the enthalpy (ΔH°) of the reaction was positive and endothermic in nature. The Gibbs free energy (ΔG°) was negative which showed the feasibility and spontaneity of adsorption process. The findings from this study support the potential use of PEG-functionalised CNTs as a nanoadsorbent to purify electroplating wastewater than others prepared sorbents. {\circledC} 2017 Published by Elsevier B.V.",
author = "M.T. Bankole and A.S. Abdulkareem and J.O. Tijani and S.S. Ochigbo and A.S. Afolabi and W.D. Roos",
note = "Export Date: 18 June 2018",
year = "2017",
doi = "10.1016/j.wri.2017.07.001",
language = "English",
volume = "18",
pages = "33--50",
journal = "Water Resources and Industry",
issn = "2212-3717",
publisher = "Elsevier Science B.V.",

}

Chemical oxygen demand removal from electroplating wastewater by purified and polymer functionalized carbon nanotubes adsorbents. / Bankole, M.T.; Abdulkareem, A.S.; Tijani, J.O.; Ochigbo, S.S.; Afolabi, A.S.; Roos, W.D.

In: Water Resources and Industry, Vol. 18, 2017, p. 33-50.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Chemical oxygen demand removal from electroplating wastewater by purified and polymer functionalized carbon nanotubes adsorbents

AU - Bankole, M.T.

AU - Abdulkareem, A.S.

AU - Tijani, J.O.

AU - Ochigbo, S.S.

AU - Afolabi, A.S.

AU - Roos, W.D.

N1 - Export Date: 18 June 2018

PY - 2017

Y1 - 2017

N2 - This study investigated the removal of chemical oxygen demand (COD) from electroplating industry wastewater via batch adsorption by purified and polymers functionalized carbon nanotubes (CNTs) as nano-adsorbents. Bimetallic Fe-Co supported on CaCO3 was utilized to produce multi-walled carbon nanotubes (MWCNT) via the catalytic chemical vapor deposition (CCVD) technique. This was subsequently followed by the purification of the as-prepared MWCNTs by a mixture of HNO3 and H2SO4 in order to remove the support and metal particles. The purified MWCNTs was further functionalized using known mass of the following polymers: Amino polyethylene glycol (PEG), polyhydroxylbutyrate (PHB) and amino polyethylene glycol with polyhydroxylbutyrate (PEG-PHB). The purified (P-CNTs) and functionalized CNTs coded PEG-CNTs; PHB-CNTs, and PEG-PHB-CNTs were characterized by HRSEM, HRTEM-EDS, BET, XRD and XPS. The electroplating wastewater was subjected to physicochemical characterization before and after treatment with various prepared nano-adsorbents using standard methods. The adsorption process under the influence of contact time, adsorbent dosage and temperature was measured using the chemical oxygen demand (COD) as indicator parameter. The HRSEM/XRD/BET confirmed that the purified and polymer functionalized CNTs were homogeneously dispersed; highly graphitic in nature with fewer impurities and of high surface area (>145 m2/g). The order of maximum COD removal by the nano-adsorbents at equilibrium time of 70 min are as follows: PEG-CNTs (99.68%) > PHB-CNTs (97.89%) > P-CNTs (96.34%) > PEG/PHB-CNTs (95.42%). Equilibrium sorption data were better described by Freudlich isotherm with the correlation coefficient (R2>0.92) than Langmuir isotherm. The adsorption kinetics for COD removal from electroplating wastewater fitted well to the pseudo-second-order model with rate constant in the range of 4 × 10-5-1 × 10-4 (g mg-1 min-1). Thermodynamics analysis of the adsorption process revealed that the enthalpy (ΔH°) of the reaction was positive and endothermic in nature. The Gibbs free energy (ΔG°) was negative which showed the feasibility and spontaneity of adsorption process. The findings from this study support the potential use of PEG-functionalised CNTs as a nanoadsorbent to purify electroplating wastewater than others prepared sorbents. © 2017 Published by Elsevier B.V.

AB - This study investigated the removal of chemical oxygen demand (COD) from electroplating industry wastewater via batch adsorption by purified and polymers functionalized carbon nanotubes (CNTs) as nano-adsorbents. Bimetallic Fe-Co supported on CaCO3 was utilized to produce multi-walled carbon nanotubes (MWCNT) via the catalytic chemical vapor deposition (CCVD) technique. This was subsequently followed by the purification of the as-prepared MWCNTs by a mixture of HNO3 and H2SO4 in order to remove the support and metal particles. The purified MWCNTs was further functionalized using known mass of the following polymers: Amino polyethylene glycol (PEG), polyhydroxylbutyrate (PHB) and amino polyethylene glycol with polyhydroxylbutyrate (PEG-PHB). The purified (P-CNTs) and functionalized CNTs coded PEG-CNTs; PHB-CNTs, and PEG-PHB-CNTs were characterized by HRSEM, HRTEM-EDS, BET, XRD and XPS. The electroplating wastewater was subjected to physicochemical characterization before and after treatment with various prepared nano-adsorbents using standard methods. The adsorption process under the influence of contact time, adsorbent dosage and temperature was measured using the chemical oxygen demand (COD) as indicator parameter. The HRSEM/XRD/BET confirmed that the purified and polymer functionalized CNTs were homogeneously dispersed; highly graphitic in nature with fewer impurities and of high surface area (>145 m2/g). The order of maximum COD removal by the nano-adsorbents at equilibrium time of 70 min are as follows: PEG-CNTs (99.68%) > PHB-CNTs (97.89%) > P-CNTs (96.34%) > PEG/PHB-CNTs (95.42%). Equilibrium sorption data were better described by Freudlich isotherm with the correlation coefficient (R2>0.92) than Langmuir isotherm. The adsorption kinetics for COD removal from electroplating wastewater fitted well to the pseudo-second-order model with rate constant in the range of 4 × 10-5-1 × 10-4 (g mg-1 min-1). Thermodynamics analysis of the adsorption process revealed that the enthalpy (ΔH°) of the reaction was positive and endothermic in nature. The Gibbs free energy (ΔG°) was negative which showed the feasibility and spontaneity of adsorption process. The findings from this study support the potential use of PEG-functionalised CNTs as a nanoadsorbent to purify electroplating wastewater than others prepared sorbents. © 2017 Published by Elsevier B.V.

U2 - 10.1016/j.wri.2017.07.001

DO - 10.1016/j.wri.2017.07.001

M3 - Article

VL - 18

SP - 33

EP - 50

JO - Water Resources and Industry

JF - Water Resources and Industry

SN - 2212-3717

ER -